首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   44篇
  免费   3篇
  国内免费   1篇
  2019年   2篇
  2017年   1篇
  2015年   2篇
  2014年   3篇
  2013年   2篇
  2012年   1篇
  2010年   1篇
  2009年   3篇
  2006年   1篇
  2005年   3篇
  2004年   2篇
  2002年   2篇
  2001年   1篇
  2000年   1篇
  1996年   2篇
  1994年   1篇
  1993年   3篇
  1992年   1篇
  1991年   2篇
  1988年   2篇
  1977年   1篇
  1974年   3篇
  1973年   1篇
  1972年   3篇
  1971年   1篇
  1967年   1篇
  1966年   2篇
排序方式: 共有48条查询结果,搜索用时 15 毫秒
31.
The binding of NADH to cytoplasmic malic dehydrogenase is shown to be affected by a number of added ligands. One class of ligands appear to be analogs of a substrate for the enzyme, L-malate. These alter the binding constant for NADH without affecting the cooperativity of binding. In contrast, fructose-1,6-diphosphate behaves as an allosteric inhibitor at low enzyme concentrations, apparently by shifting the monomer-dimer equilibrium of the protein to the cooperatively binding dimer. The significance of these results are discussed in terms of a proposed regulatory function for the enzyme.  相似文献   
32.
Witt  C.  Cassman  K.G.  Olk  D.C.  Biker  U.  Liboon  S.P.  Samson  M.I.  Ottow  J.C.G. 《Plant and Soil》2000,225(1-2):263-278
The effects of soil aeration, N fertilizer, and crop residue management on crop performance, soil N supply, organic carbon (C) and nitrogen (N) content were evaluated in two annual double-crop systems for a 2-year period (1994–1995). In the maize-rice (M-R) rotation, maize (Zea mays, L.) was grown in aerated soil in the dry season (DS) followed by rice (Oriza sativa, L.) grown in flooded soil in the wet season (WS). In the continuous rice system (R-R), rice was grown in flooded soil in both the DS and WS. Subplot treatments within cropping-system main plots were N fertilizer rates, including a control without applied N. In the second year, sub-subplot treatments with early or late crop residue incorporation were initiated after the 1995 DS maize or rice crop. Soil N supply and plant N uptake of 1995 WS rice were sensitive to the timing of residue incorporation. Early residue corporation improved the congruence between soil N supply and crop demand although the size of this effect was influenced by the amount and quality of incorporated residue. Grain yields were 13-20% greater with early compared to late residue incorporation in R-R treatments without applied N or with moderate rates of applied N. Although substitution of maize for rice in the DS greatly reduced the amount of time soils remained submerged, the direct effects of crop rotation on plant growth and N uptake in the WS rice crops were small. However, replacement of DS rice by maize caused a reduction in soil C and N sequestration due to a 33–41% increase in the estimated amount of mineralized C and less N input from biological N fixation during the DS maize crop. As a result, there was 11–12% more C sequestration and 5–12% more N accumulation in soils continuously cropped with rice than in the M-R rotation with the greater amounts sequestered in N-fertilized treatments. These results document the capacity of continuous, irrigated rice systems to sequester C and N during relatively short time periods. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   
33.
34.
Sedimentation equilibrium studies on glutamic dehydrogenase   总被引:3,自引:0,他引:3  
M Cassman  H K Schachman 《Biochemistry》1971,10(6):1015-1024
  相似文献   
35.
At a global scale, cereal yields and fertilizer N consumption have increased in a near-linear fashion during the past 40 years and are highly correlated with one another. However, large differences exist in historical trends of N fertilizer usage and nitrogen use efficiency (NUE) among regions, countries, and crops. The reasons for these differences must be understood to estimate future N fertilizer requirements. Global nitrogen needs will depend on: (i) changes in cropped cereal area and the associated yield increases required to meet increasing cereal demand from population and income growth, and (ii) changes in NUE at the farm level. Our analysis indicates that the anticipated 38% increase in global cereal demand by 2025 can be met by a 30% increase in N use on cereals, provided that the steady decline in cereal harvest area is halted and the yield response to applied N can be increased by 20%. If losses of cereal cropping area continue at the rate of the past 20 years (?0.33% per year) and NUE cannot be increased substantially, a 60% increase in global N use on cereals would be required to meet cereal demand. Interventions to increase NUE and reduce N losses to the environment must be accomplished at the farm-or field-scale through a combination of improved technologies and carefully crafted local policies that contribute to the adoption of improved N management; uniform regional or national directives are unlikey to be effective at both sustaining yield increases and improving NUE. Examples from several countries show that increases in NUE at rates of 1% per year or more can be achieved if adequate investments are made in research and extension. Failure to arrest the decrease in cereal crop area and to improve NUE in the world’s most important agricultural systems will likely cause severe damage to environmental services at local, regional, and global scales due to a large increase in reactive N load in the environment.  相似文献   
36.
37.
Soil pH is decreasing in many soils in the semiarid Great Plains of the United States under dry land no-till (NT) cropping systems. This study was conducted to determine the rate of acidification and the causes of the acidification of a soil cropped to a winter wheat (Triticum aestivum L.)-grain sorghum [Sorghum bicolor (L.) Moench]/corn (Zea mays L.)-fallow rotation (W-S/C-F) under NT. The study was conducted from 1989 to 2003 on soil with a long-term history of either continuous NT management [NT(LT)] (1962–2003) or conventional tillage (CT) (1962–1988) then converted to NT [NT(C)] (1989–2003). Nitrogen was applied as ammonium nitrate (AN) at a rate of 23 kg N ha−1 in 1989 and as urea ammonium nitrate (UAN) at an average annual rate of 50 kg N ha−1 from 1990 to 2003 for both NT treatments. Soil samples were collected at depth increments of 0–5, 5–10, 10–15, and 15–30 cm in the spring of 1989 and 2003. Acidification rates for the NT(LT) and NT(C) treatments were 1.13 and 1.48 kmol H+ ha−1 yr−1 in the 0–30 cm depth, respectively. The amount of CaCO3 needed to neutralize the acidification is 57 and 74 kg ha−1 yr−1 for the NT(LT) and NT(C) treatments, respectively. A proton budget estimated by the Helyar and Porter [1989, Soil Acidity and Plant Growth, Academic Press] method indicated that NO3 leaching from the 30 cm depth was a primary cause of long-term acidification in this soil. Nitrate leaching accounted for 59 and 66% of the H+ from the acid causing factors for NT(LT) and NT(C) treatments, respectively. The addition of crop residues to the soil neutralized 62 and 47% of the acidity produced from the leaching of NO3, and 37 and 31% of the acid resulting from NO3 leaching and the other acid-causing constituents for the NT(LT) and NT(C) treatments, respectively. These results document that surface soils in dry land W-S/C-F rotations under NT are acidifying under current management practices. Improved management to increase nitrogen uptake efficiency from applied fertilizer would help reduce the rate of acidification. The addition of lime materials to prevent negative impacts on grain yields may be necessary in the future under current management practices. A contribution of the university of Nebraska Agricultural Research Division, Lincoln, NE 68583. Journal series No. 15120  相似文献   
38.
Nitrogen and yield potential of irrigated rice   总被引:7,自引:1,他引:6  
Kropff  M. J.  Cassman  K. G.  Van Laar  H. H.  Peng  S. 《Plant and Soil》1993,155(1):391-394
Yield potential of modern rice varieties and implications for N management were evaluated in a series of field studies that provided data for validation of an eco-physiological simulation model for rice. We tested the hypothesis that N was the major factor limiting yield potential of irrigated rice. The simulation model ORYZA1 was used to evaluate the observed yield differences between varieties grown with different N management and in different environments. The model explained differences in yield of the treatments resonably well on the basis of differences in radiation, temperature, leaf N content and variety coefficients for phenological development. It was demonstrated by the model and experimental data that yield levels of 6 t ha-1 in the wet season and 10 t ha-1 in the dry season can be obtained in the tropics with the current short duration varieties only when the N supply from soil and fertilizer is adequately maintained at key growth stages. Yield probabilities for rice crops were simulated for different environments using long term weather data at two Philippine sites.  相似文献   
39.
The phylogenetic status of arthropods, as inferred from 18S rRNA sequences   总被引:16,自引:4,他引:12  
Partial 18S rRNA sequences of five chelicerate arthropods plus a crustacean, myriapod, insect, chordate, echinoderm, annelid, and platyhelminth were compared. The sequence data were used to infer phylogeny by using a maximum-parsimony method, an evolutionary-distance method, and the evolutionary-parsimony method. The phylogenetic inferences generated by maximum-parsimony and distance methods support both monophyly of the Arthropoda and monophyly of the Chelicerata within the Arthropoda. These results are congruent with phylogenies based on rigorous cladistic analyses of morphological characters. Results support the inclusion of the Arthropoda within a spiralian or protostome coelomate clade that is the sister group of a deuterostome clade, refuting the hypothesis that the arthropods represent the "primitive" sister group of a protostome coelomate clade. Bootstrap analyses and consideration of all trees within 1% of the length of the most parsimonious tree suggest that relationships between the nonchelicerate arthropods and relationships within the chelicerate clade cannot be reliably inferred with the partial 18S rRNA sequence data. With the evolutionary-parsimony method, support for monophyly of the Arthropoda is found in the majority of the combinations analyzed if the coelomates are used as "outgroups." Monophyly of the Chelicerata is supported in most combinations assessed. Our analyses also indicate that the evolutionary-parsimony method, like distance and parsimony, may be biased by taxa with long branches. We suggest that a previous study's inference of the Arthropoda as paraphyletic may be the result of (a) having two few arthropod taxa available for analysis and (b) including long-branched taxa.   相似文献   
40.
At a global scale, cereal yields and fertilizer N consumption have increased in a near-linear fashion during the past 40 years and are highly correlated with one another. However,large differences exist in historical trends of N fertilizer usage and nitrogen use efficiency (NUE)among regions, countries, and crops. The reasons for these differences must be understood to estimate future N fertilizer requirements. Global nitrogen needs will depend on: (i) changes in cropped cereal area and the associated yield increases required to meet increasing cereal demand from population and income growth, and (ii) changes in NUE at the farm level. Our analysis indicates that the anticipated 38% increase in global cereal demand by 2025 can be met by a 30% increase in N use on cereals, provided that the steady decline in cereal harvest area is halted and the yield response to applied N can be increased by 20%. If losses of cereal cropping area continue at the rate of the past 20 years (-0.33% per year) and NUE cannot be increased substantially, a 60% increase in global N use on cereals would be required to meet cereal demand. Interventions to increase NUE and reduce N losses to the environment must be accomplished at the farm- or field-scale through a combination of improved technologies and carefully crafted local policies that contribute to the adoption of improved N management; uniform regional or national directives are unlikey to be effective at both sustaining yield increases and improving NUE. Examples from several countries show that increases in NUE at rates of 1% per year or more can be achieved if adequate investments are made in research and extension. Failure to arrest the decrease in cereal crop area and to improve NUE in the world's most important agricultural systems will likely cause severe damage to environmental services at local, regional, and global scales due to a large increase in reactive N load in the environment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号