首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   175篇
  免费   8篇
  183篇
  2021年   6篇
  2020年   4篇
  2019年   5篇
  2018年   1篇
  2017年   5篇
  2015年   9篇
  2014年   10篇
  2013年   12篇
  2012年   8篇
  2011年   11篇
  2010年   7篇
  2009年   9篇
  2008年   14篇
  2007年   3篇
  2006年   10篇
  2005年   9篇
  2004年   8篇
  2003年   6篇
  2002年   1篇
  2001年   3篇
  2000年   3篇
  1999年   3篇
  1997年   2篇
  1996年   1篇
  1994年   2篇
  1991年   2篇
  1990年   1篇
  1989年   3篇
  1988年   3篇
  1985年   3篇
  1984年   2篇
  1983年   1篇
  1982年   2篇
  1981年   2篇
  1980年   2篇
  1979年   2篇
  1976年   1篇
  1972年   1篇
  1961年   1篇
  1957年   1篇
  1954年   1篇
  1952年   1篇
  1938年   1篇
  1899年   1篇
排序方式: 共有183条查询结果,搜索用时 15 毫秒
11.
We have investigated the requirements for NDJ1 in meiotic telomere redistribution and clustering in synchronized cultures of Saccharomyces cerevisiae. On induction of wild-type meiosis, telomeres disperse from premeiotic aggregates over the nuclear periphery, and then cluster near the spindle pole body (bouquet arrangement) before dispersing again. In ndj1Delta meiocytes, telomeres are scattered throughout the nucleus and fail to form perinuclear meiosis-specific distribution patterns, suggesting that Ndj1p may function to tether meiotic telomeres to the nuclear periphery. Since ndj1Delta meiocytes fail to cluster their telomeres at any prophase stage, Ndj1p is the first protein shown to be required for bouquet formation in a synaptic organism. Analysis of homologue pairing by two-color fluorescence in situ hybridization with cosmid probes to regions on III, IX, and XI revealed that disruption of bouquet formation is associated with a significant delay (>2 h) of homologue pairing. An increased and persistent fraction of ndj1Delta meiocytes with Zip1p polycomplexes suggests that chromosome polarization is important for synapsis progression. Thus, our observations support the hypothesis that meiotic telomere clustering contributes to efficient homologue alignment and synaptic pairing. Under naturally occurring conditions, bouquet formation may allow for rapid sporulation and confer a selective advantage.  相似文献   
12.
This study was conduced to assess the effects of a one time embryonic exposure to p,p'-DDE (dichlorodiphenyldichloroethylene; DDE) on the reproductive development and function in Japanese quail (Coturnix japonica). Embryos were exposed at day one of incubation to either 20 or 40 microg DDE or a sesame oil vehicle control (injection volume=20 microl). Onset of puberty, gonadal histopathology, sperm motility, cloacal gland size, and male copulatory behavior were assessed in adults. DDE accelerated onset of puberty in females and reduced male reproductive behaviors. Gonadal morphology and sperm motility appeared to be unaffected. Results from this study provide evidence that the neuroendocrine system may be more sensitive and less resilient to embryonic exposure to contaminants than traditional measures of reproductive success following contaminant exposure in adults. This study further supports the inclusion of behavioral assessments in toxicity tests.  相似文献   
13.
14.
Aedes aegypti is the urban vector of dengue viruses worldwide. While climate influences the geographical distribution of this mosquito species, other factors also determine the suitability of the physical environment. Importantly, the close association of A. aegypti with humans and the domestic environment allows this species to persist in regions that may otherwise be unsuitable based on climatic factors alone. We highlight the need to incorporate the impact of the urban environment in attempts to model the potential distribution of A. aegypti and we briefly discuss the potential for future technology to aid management and control of this widespread vector species.  相似文献   
15.
16.
17.
Budding yeast PDS5 is an essential gene in mitosis and is required for chromosome condensation and sister chromatid cohesion. Here we report that PDS also is required in meiosis. Pds5p localizes on chromosomes at all stages during meiotic cycle, except anaphase I. PDS5 plays an important role at first meiotic prophase. Failure in function of PDS5 causes premature separation of chromosomes. The loading of Pds5p onto chromosome requires the function of REC8, but the association of Rec8p with chromosome is independent of PDS5. Mutant analysis and live cell imaging indicate that PDS5 play a role in meiosis II as well.  相似文献   
18.
Bacteria and plastids divide symmetrically through binary fission by accurately placing the division site at midpoint, a process initiated by FtsZ polymerization, which forms a Z-ring. In Escherichia coli precise Z-ring placement at midcell depends on controlled oscillatory behavior of MinD and MinE: In the presence of ATP MinD interacts with the FtsZ inhibitor MinC and migrates to the membrane where the MinD-MinC complex recruits MinE, followed by MinD-mediated ATP hydrolysis and membrane release. Although correct Z-ring placement during Arabidopsis plastid division depends on the precise localization of the bacterial homologs AtMinD1 and AtMinE1, the underlying mechanism of this process remains unknown. Here we have shown that AtMinD1 is a Ca2+-dependent ATPase and through mutation analysis demonstrated the physiological importance of this activity where loss of ATP hydrolysis results in protein mislocalization within plastids. The observed mislocalization is not due to disrupted AtMinD1 dimerization, however; the active site AtMinD1(K72A) mutant is unable to interact with the topological specificity factor AtMinE1. We have shown that AtMinE1, but not E. coli MinE, stimulates AtMinD1-mediated ATP hydrolysis, but in contrast to prokaryotes stimulation occurs in the absence of membrane lipids. Although AtMinD1 appears highly evolutionarily conserved, we found that important biochemical and cell biological properties have diverged. We propose that correct intraplastidic AtMinD1 localization is dependent on AtMinE1-stimulated, Ca2+-dependent AtMinD1 ATP hydrolysis, ultimately ensuring precise Z-ring placement and symmetric plastid division.  相似文献   
19.
Sister chromatid cohesion and interhomologue recombination are coordinated to promote the segregation of homologous chromosomes instead of sister chromatids at the first meiotic division. During meiotic prophase in Saccharomyces cerevisiae, the meiosis-specific cohesin Rec8p localizes along chromosome axes and mediates most of the cohesion. The mitotic cohesin Mcd1p/Scc1p localizes to discrete spots along chromosome arms, and its function is not clear. In cells lacking Tid1p, which is a member of the SWI2/SNF2 family of helicase-like proteins that are involved in chromatin remodeling, Mcd1p and Rec8p persist abnormally through both meiotic divisions, and chromosome segregation fails in the majority of cells. Genetic results indicate that the primary defect in these cells is a failure to resolve Mcd1p-mediated connections. Tid1p interacts with recombination enzymes Dmc1p and Rad51p and has an established role in recombination repair. We propose that Tid1p remodels Mcd1p-mediated cohesion early in meiotic prophase to facilitate interhomologue recombination and the subsequent segregation of homologous chromosomes.  相似文献   
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号