首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   347篇
  免费   31篇
  国内免费   3篇
  2019年   4篇
  2018年   2篇
  2017年   3篇
  2016年   5篇
  2015年   13篇
  2014年   6篇
  2013年   20篇
  2012年   14篇
  2011年   14篇
  2010年   15篇
  2009年   8篇
  2008年   12篇
  2007年   17篇
  2006年   15篇
  2005年   13篇
  2004年   13篇
  2003年   10篇
  2002年   21篇
  2001年   20篇
  2000年   9篇
  1999年   13篇
  1998年   9篇
  1997年   6篇
  1996年   4篇
  1995年   2篇
  1994年   6篇
  1993年   8篇
  1992年   10篇
  1991年   4篇
  1990年   9篇
  1989年   3篇
  1988年   3篇
  1987年   2篇
  1986年   5篇
  1984年   3篇
  1983年   3篇
  1981年   6篇
  1980年   4篇
  1979年   4篇
  1978年   3篇
  1977年   3篇
  1976年   2篇
  1975年   5篇
  1974年   2篇
  1973年   4篇
  1972年   4篇
  1970年   2篇
  1968年   2篇
  1967年   3篇
  1960年   2篇
排序方式: 共有381条查询结果,搜索用时 31 毫秒
81.
The uptake of Urd into the yeast Saccharomyces cerevisiae is mediated by Fui1p, a Urd-specific nucleoside transporter encoded by the FUI1 gene and a member of the yeast Fur permease family, which also includes the uracil, allantoin, and thiamine permeases. When Fui1p was produced in a double-permease knock-out strain (fur4Deltafui1Delta) of yeast, Urd uptake was stimulated at acidic pH and sensitive to the protonophore carbonyl cyanide m-chlorophenylhydrazone. Electrophysiological analysis of recombinant Fui1p produced in Xenopus oocytes demonstrated that Fui1p-mediated Urd uptake was dependent on proton cotransport with a 1:1 stoichiometry. Mutagenesis analysis of three charged amino acids (Glu(259), Lys(288), and Asp(474) in putative transmembrane segments 3, 4, and 7, respectively) revealed that only Lys(288) was required for maintaining high Urd transport efficiency. Analysis of binding energies between Fui1p and different Urd analogs indicated that Fuip1 interacted with C(3')-OH, C(2')-OH, C(5)-H, and N(3)-H of Urd. Fui1p-mediated transport of Urd was inhibited by analogs with modifications at C-5', but was not inhibited significantly by analogs with modifications at C-3', C-5, and N-3 or inversions of configuration at C-2' and C-3'. This characterization of Fui1p contributes to the emerging knowledge of the structure and function of the Fur family of permeases, including the Fui1p orthologs of pathogenic fungi.  相似文献   
82.
To better understand nucleoside transport processes and intracellular fates of nucleosides, we have developed a pair of fluorescent nucleoside analogues, FuPmR and dFuPmR, that differ only in the sugar moiety (ribofuranosyl versus 2'-deoxy, respectively), for real-time analysis of nucleoside transport into living cells by confocal microscopy. The binding and transportability of the two compounds were assessed for five recombinant human nucleoside transporters (hENT1/2, hCNT1/2/3) produced in Saccharomyces cerevisiae and/or oocytes of Xenopus laevis. The ribosyl derivative (FuPmR) was used to demonstrate proof of principle in live cell imaging studies in 11 cultured human cancer cell lines with different hENT1 activities. The autofluorescence emitted from FuPmR enabled direct visualization of its movement from the extracellular medium into the intracellular compartment of live cells, and this process was blocked by inhibitors of hENT1 (nitrobenzylmercaptopurine ribonucleoside, dipyridamole, and dilazep). Quantitative analysis of fluorescence signals revealed two stages of FuPmR uptake: a fast first stage that represented the initial uptake rate (i.e., transport rate) followed by a slow long-lasting second stage. The accumulation of FuPmR and/or its metabolites in nuclei and mitochondria was also visualized by live cell imaging. Measurements of fluorescence intensity increases in nuclei and mitochondria revealed rate-limited processes of permeant translocation across intracellular membranes, demonstrating for the first time the intracellular distribution of nucleosides and/or nucleoside metabolites in living cells. The use of autofluorescent nucleosides in time-lapse confocal microscopy is a novel strategy to quantitatively study membrane transport of nucleosides and their metabolites that will provide new knowledge of nucleoside biology.  相似文献   
83.
Calcitriol has been implicated as an agent that has neuroprotective effects in various animal models of diseases, possibly by upregulating glial cell line-derived neurotrophic factor (GDNF). The present study examined the neuroprotective effects of calcitriol in a model of early Parkinson’s disease. Rats were treated daily with calcitriol or saline for 7 days before an intraventricular injection of 6-hydroxydopamine (6-OHDA), and then for 1 day or daily for 3½ to 4 weeks after lesioning. Evoked overflow and tissue content of dopamine (DA) were determined 3½ to 4 weeks post lesion. The 8-day calcitriol treatment did not attenuate 6-OHDA-induced decreases in evoked overflow of DA, nor did it protect against 6-OHDA-induced reductions in tissue levels of DA in the striatum or substantia nigra. However, the long-term calcitriol treatment did significantly increase evoked overflow of DA, as well as the amount of DA in the striatum, compared to saline treated animals. GDNF was significantly increased in the substantia nigra, but not in the striatum, of non-lesioned, calcitriol treated rats. These results suggest that long-term treatment with calcitriol can provide partial protection for dopaminergic neurons against the effects of intraventricularly administered 6-OHDA.  相似文献   
84.
We immobilized his-tag alkaline phosphatase (ALP) randomly and with the desirable orientation (site directed) to compare the effects of the enzyme activity on the beads. The chemiluminescence was employed to increase the sensitivity of enzyme labelled assays. Flow injection was also carried out for the detection of chemical and biological molecules in flow solutions. The Vmax of randomly immobilized his-tag ALP was 1.2 and the Vmax of site directed immobilized his-tag ALP was 1.5. In other words, the activity of site directed immobilized his-tag ALP was about 1.3-folds increased. The detection limit was detected to be 6 x 10(-6) M for the flow injection system.  相似文献   
85.
Prior studies have shown that removal of vestibular inputs produces lability in blood pressure during orthostatic challenges (Holmes MJ, Cotter LA, Arendt HE, Cass SP, and Yates BJ. Brain Res 938: 62-72, 2002; Jian BJ, Cotter LA, Emanuel BA, Cass SP, and Yates BJ. J Appl Physiol 86: 1552-1560, 1999). Furthermore, these studies led to the prediction that the blood pressure instability results in susceptibility for orthostatic intolerance. The present experiments tested this hypothesis by recording common carotid blood flow (CCBF) in conscious cats during head-up tilts of 20, 40, and 60 degrees amplitudes, before and after the surgical elimination of labyrinthine inputs through a bilateral vestibular neurectomy. Before vestibular lesions in most animals, CCBF remained stable during head-up rotations. Unexpectedly, in five of six animals, the vestibular neurectomy resulted in a significant increase in baseline CCBF, particularly when the laboratory was illuminated; on average, basal blood flow measured when the animals were in the prone position was 41 +/- 17 (SE) % higher after the first week after the lesions. As a result, even when posturally related lability in CCBF occurred after removal of vestibular inputs, blood supply to the head was not lower than when labyrinthine inputs were present. These data suggest that vestibular influences on cardiovascular regulation are more complex than previously appreciated, because labyrinthine signals appear to participate in setting basal rates of blood flow to the head in addition to triggering dynamic changes in the circulation to compensate for orthostatic challenges.  相似文献   
86.
Coiffard, C. & Gomez, B. 2009: The rise to dominance of the angiosperm kingdom: dispersal, habitat widening and evolution during the Late Cretaceous of Europe. Lethaia, Vol. 43, pp. 164–169. The earliest fossil records of angiosperms in Europe occur in the Barremian and consist of freshwater wetland plants. From the Barremian onwards, angiosperms show a stepwise widening of their ecological range with the result that they inhabited most environments by the Cenomanian. Nevertheless, most angiosperms had still restricted habitats, while a few angiosperm trees were confined to disturbed environments, such as channel margins. A Wagner’s Parsimony Method analysis performed on a fossil plant and locality database from the Turonian to the Campanian of Europe indicates continued decrease in richness of ferns and gymnosperms compared with angiosperms, turnover between conifer and palm trees in freshwater‐related swamps at about the Cenomanian/Turonian boundary, and spreading of angiosperm trees through the floodplains. The ecological range of angiosperm trees was increased, being recorded in channel margins from the Cenomanian and spreading over floodplains (e.g. Platanaceae) and swamps (e.g. Arecaceae) by the Campanian. These new ecological ranges and successions went with innovative architectures, such as dicot trees and palm trees. Most living core angiosperm families had their earliest representatives in the Late Cretaceous, which should be considered as the dawn of modern angiosperm forests. □Core angiosperms, Europe, Late Cretaceous, palms, Wagner’s Parsimony Method.  相似文献   
87.
Directed evolution has been widely applied for gene improvement through random mutagenesis of coding sequences. Through error-prone PCR both in the coding sequence and the regulatory sequence of E. coli alkaline phosphatase, the cellular enzyme activity has been efficiently enhanced. Sequence analysis revealed that the resultant mutant 34-B12, which showed a sevenfold increased enzyme activity at the cellular level, contains three mutations in the regulatory sequence and another three mutations in the coding sequence. Activity assays of the enzyme containing the corresponding amino acid substitutions proved that the amino acid mutations contribute only to a small portion to the increased cellular enzyme activity. So the mutations in the 5'-untranslated region were analyzed separately and combinationally. The results suggested that one mutation yielded a stronger promoter and the other two mutations both elevated the E. coli alkaline phosphatase expression at the translational level; moreover, a stronger Shine-Dalgarno sequence was generated.  相似文献   
88.
E. Cass  J. Wong 《CMAJ》1975,112(8):933
  相似文献   
89.
The human (h) and rat (r) equilibrative (Na(+)-independent) nucleoside transporters (ENTs) hENT1, rENT1, hENT2, and rENT2 belong to a family of integral membrane proteins with 11 transmembrane domains (TMs) and are distinguished functionally by differences in sensitivity to inhibition by nitrobenzylthioinosine and coronary vasoactive drugs. Structurally, the proteins have a large glycosylated loop between TMs 1 and 2 and a large cytoplasmic loop between TMs 6 and 7. In the present study, hENT1, rENT1, hENT2, and rENT2 were produced in Xenopus laevis oocytes and investigated for their ability to transport pyrimidine and purine nucleobases. hENT2 and rENT2 efficiently transported radiolabeled hypoxanthine, adenine, guanine, uracil, and thymine (apparent K(m) values 0.7-2.6 mm), and hENT2, but not rENT2, also transported cytosine. These findings were independently confirmed by hypoxanthine transport experiments with recombinant hENT2 produced in purine-cytosine permease (FCY2)-deficient Saccharomyces cerevisiae and provide the first direct demonstration that the ENT2 isoform is a dual mechanism for the cellular uptake of nucleosides and nucleobases, both of which are physiologically important salvage metabolites. In contrast, recombinant hENT1 and rENT1 mediated negligible oocyte fluxes of hypoxanthine relative to hENT2 and rENT2. Chimeric experiments between rENT1 and rENT2 using splice sites at rENT1 residues 99 (end of TM 2), 171 (between TMs 4 and 5), and 231 (end of TM 6) identified TMs 5-6 of rENT2 (amino acid residues 172-231) as a determinant of nucleobase transport activity, suggesting that this domain forms part(s) of the ENT2 substrate translocation channel.  相似文献   
90.
Renal handling of physiological and pharmacological nucleosides is a major determinant of their plasma levels and tissue availabilities. Additionally, the pharmacokinetics and normal tissue toxicities of nucleoside drugs are influenced by their handling in the kidney. Renal reabsorption or secretion of nucleosides is selective and dependent on integral membrane proteins, termed nucleoside transporters (NTs) present in renal epithelia. The 7 known human NTs (hNTs) exhibit varying permeant selectivities and are divided into 2 protein families: the solute carrier (SLC) 29 (SLC29A1, SLC29A2, SLC29A3, SLC29A4) and SLC28 (SLC28A1, SLC28A2, SLC28A3) proteins, otherwise known, respectively, as the human equilibrative NTs (hENTs, hENT1, hENT2, hENT3, hENT4) and human concentrative NTs (hCNTs, hCNT1, hCNT2, hCNT3). The well characterized hENTs (hENT1 and hENT2) are bidirectional facilitative diffusion transporters in plasma membranes; hENT3 and hENT4 are much less well known, although hENT3, found in lysosomal membranes, transports nucleosides and is pH dependent, whereas hENT4-PMAT is a H+-adenosine cotransporter as well as a monoamine-organic cation transporter. The 3 hCNTs are unidirectional secondary active Na+-nucleoside cotransporters. In renal epithelial cells, hCNT1, hCNT2, and hCNT3 at apical membranes, and hENT1 and hENT2 at basolateral membranes, apparently work in concert to mediate reabsorption of nucleosides from lumen to blood, driven by Na+ gradients. Secretion of some physiological nucleosides, therapeutic nucleoside analog drugs, and nucleotide metabolites of therapeutic nucleoside and nucleobase drugs likely occurs through various xenobiotic transporters in renal epithelia, including organic cation transporters, organic anion transporters, multidrug resistance related proteins, and multidrug resistance proteins. Mounting evidence suggests that hENT1 may have a presence at both apical and basolateral membranes of renal epithelia, and thus may participate in both selective secretory and reabsorptive fluxes of nucleosides. In this review, the renal handling of nucleosides is examined with respect to physiological and clinical implications for the regulation of human kidney NTs and adenosine signaling, intracellular nucleoside transport, and nephrotoxicities associated with some nucleoside drugs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号