首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20篇
  免费   0篇
  2018年   1篇
  2012年   1篇
  2011年   1篇
  2009年   3篇
  2008年   2篇
  2007年   1篇
  2006年   2篇
  2005年   2篇
  2003年   2篇
  2002年   1篇
  1998年   2篇
  1997年   1篇
  1978年   1篇
排序方式: 共有20条查询结果,搜索用时 31 毫秒
11.
Mitochondria play an essential role in the generation of the energy needed for eukaryotic cell life and in the release of molecules involved in initiation of cell death. Here we review the changes in isolated mitochondrial fluorescent populations as distinguished by flow cytometry during postnatal development and their regulation by thyroid hormones and catecholamines. The use of flow cytometry in the study of mitochondrial changes occurring under hypothyroidism, alcohol abuse and aging is also reviewed.  相似文献   
12.
Malaria is caused by four species of apicomplexan protozoa belonging to the genus Plasmodium. These parasites possess a specialized collection of secretory organelles called rhoptries, micronemes and dense granules (DGs) that in part facilitate invasion of host cells. The mechanism by which the parasite traffics proteins to these organelles as well as regulates their secretion has important implications for understanding the invasion process and may lead to development of novel intervention strategies. In this review, we focus on emerging data about trafficking signals, mechanisms of biogenesis and secretion. At least some of these are conserved in higher eukaryotes, suggesting that rhoptries, micronemes and DGs are related to organelles such as secretory lysosomes that are well known to mainstream cell biologists.  相似文献   
13.
Despite important advancesin the understanding of copper secretion and excretion, the molecularcomponents of intestinal copper absorption remain a mystery. DMT1, alsoknown as Nramp2 and DCT1, is the transporter responsible for intestinaliron uptake. Electrophysiological evidence suggests that DMT1 can alsobe a copper transporter. Thus we examined the potential role of DMT1 asa copper transporter in intestinal Caco-2 cells. Treatment of cellswith a DMT1 antisense oligonucleotide resulted in 80 and 48%inhibition of iron and copper uptake, respectively. Cells incorporatedconsiderable amounts of copper as Cu1+, whereasCu2+ transport was about 10-fold lower. Cu1+inhibited apical Fe2+ transport. Fe2+, but notFe3+, effectively inhibited Cu1+ uptake. Theiron content of the cells influenced both copper and iron uptake. Cellswith low iron content transported fourfold more iron and threefold morecopper than cells with high iron content. These results demonstratethat DMT1 is a physiologically relevant Cu1+ transporter inintestinal cells, indicating that intestinal absorption of copper andiron are intertwined.

  相似文献   
14.
Parasite genomes   总被引:2,自引:0,他引:2  
  相似文献   
15.
Plasmodium parasites have three sets of specialised secretory organelles at the apical end of their invasive forms--rhoptries, micronemes and dense granules. The contents of these organelles are responsible for or contribute to host cell invasion and modification, and at least four apical proteins are leading vaccine candidates. Given the unusual nature of Plasmodium invasion, it is not surprising that unique proteins are involved in this process. Nowhere is this more evident than in rhoptries. We have collated data from several recent studies to compile a rhoptry proteome. Discussion is focussed here on rhoptry content and function.  相似文献   
16.
17.
We hypothesizedthat left atrial hypertension results in pulmonary vasoconstriction,which is obscured by the expected passive decrease in pulmonaryvascular resistance. The objectives of this study were todemonstrate and quantify the vasoconstrictive changes that occur in thepulmonary circulation during experimental left atrial hypertension, todetermine the site of vasoconstriction, and to explore its mechanism.Sheep were instrumented for measurement of pulmonary arterial (Ppa),left atrial (Pla), and systemic arterial pressures (Psa) with a Foleyballoon catheter to variably obstruct the mitral valve. Distalpulmonary arterial wedge pressure (Ppaw) was determined by using a 5-FrSwan-Ganz catheter that was advanced until it wedged with the balloondeflated. Cardiac output (CO) was estimated by thermodilution;pulmonary vascular resistances (PVR) were calculated as mean (Ppa  Pla)/CO = total PVR, (Ppa  Ppaw)/CO = upstream PVR, and(Ppaw  Pla)/CO = downstream PVR. We studied 15 awake sheep atbaseline and during increases in Pla of 10 and 20 cmH2O, with and without inhalationof ~36 parts per million of nitric oxide. Left atrial hypertensionresulted in elevation of Ppa. CO decreased only slightly at both levels of Pla elevation. Nitric oxide inhalation caused a significant decreasein PVR, which was greater as Pla increased. This vasodilator effect wasmost striking in downstream vessels. Experiments with phentolamine,atropine, and ibuprofen failed to reveal the mechanism of the reactivepulmonary vasoconstriction.

  相似文献   
18.
Malaria is caused by four species of apicomplexan protozoa belonging to the genus Plasmodium. These parasites possess a specialized collection of secretory organelles called rhoptries, micronemes and dense granules (DGs) that in part facilitate invasion of host cells. The mechanism by which the parasite traffics proteins to these organelles as well as regulates their secretion has important implications for understanding the invasion process and may lead to development of novel intervention strategies. In this review, we focus on emerging data about trafficking signals, mechanisms of biogenesis and secretion. At least some of these are conserved in higher eukaryotes, suggesting that rhoptries, micronemes and DGs are related to organelles such as secretory lysosomes that are well known to mainstream cell biologists.  相似文献   
19.
Apicomplexan parasites are characterised by the presence of specialised organelles, such as rhoptries, located at the apical end of invasive forms that play an important role in invasion of the host cell and formation of the parasitophorous vacuole. In this study, we have characterised a novel Plasmodium falciparum rhoptry protein, Pf34, encoded by a single exon gene located on chromosome 4 and expressed as a 34kDa protein in mature asexual stage parasites. Pf34 is expressed later in the life cycle than the previously described rhoptry protein, Rhoptry Associated Membrane Antigen (RAMA). Orthologues of Pf34 are present in other Plasmodium species and a potential orthologue has also been identified in Toxoplasma gondii. Indirect immunofluorescence assays show that Pf34 is located at the merozoite apex and localises to the rhoptry neck. Pf34, previously demonstrated to be glycosyl-phosphatidyl-inositol (GPI)-anchored [Gilson, P.R., Nebl, T., Vukcevic, D., Moritz, R.L., Sargeant, T., Speed, T.P., Schofield, L., Crabb, B.S. (2006) Identification and stoichiometry of GPI-anchored membrane proteins of the human malaria parasite Plasmodium falciparum. Mol. Cell. Proteomics 5, 1286-1299.], is associated with parasite-derived detergent-resistant microdomains (DRMs). Pf34 is carried into the newly invaded ring, consistent with a role for Pf34 in the formation of the parasitophorous vacuole. Pf34 is exposed to the human immune system during infection and is recognised by human immune sera collected from residents of malaria endemic areas of Vietnam and Papua New Guinea.  相似文献   
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号