首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1499篇
  免费   164篇
  国内免费   4篇
  2022年   17篇
  2021年   55篇
  2020年   33篇
  2019年   24篇
  2018年   32篇
  2017年   19篇
  2016年   38篇
  2015年   86篇
  2014年   68篇
  2013年   80篇
  2012年   114篇
  2011年   108篇
  2010年   58篇
  2009年   53篇
  2008年   68篇
  2007年   102篇
  2006年   57篇
  2005年   53篇
  2004年   60篇
  2003年   52篇
  2002年   63篇
  2001年   21篇
  2000年   24篇
  1999年   27篇
  1998年   19篇
  1997年   13篇
  1996年   9篇
  1995年   10篇
  1994年   8篇
  1993年   7篇
  1992年   13篇
  1991年   17篇
  1990年   20篇
  1989年   16篇
  1988年   16篇
  1987年   14篇
  1986年   12篇
  1985年   13篇
  1984年   16篇
  1983年   13篇
  1982年   10篇
  1981年   9篇
  1980年   15篇
  1979年   10篇
  1978年   11篇
  1977年   5篇
  1975年   8篇
  1974年   8篇
  1973年   8篇
  1972年   7篇
排序方式: 共有1667条查询结果,搜索用时 46 毫秒
101.
Class I MHC molecules bind intracellular peptides for presentation to cytotoxic T lymphocytes. Identification of peptides presented by class I molecules during infection is therefore a priority for detecting and targeting intracellular pathogens. To understand which host-encoded peptides distinguish HIV-infected cells, we have developed a mass spectrometric approach to characterize HLA-B*0702 peptides unique to or up-regulated on infected T cells. In this study, we identify 15 host proteins that are differentially presented on infected human T cells. Peptides with increased expression on HIV-infected cells were derived from multiple categories of cellular proteins including RNA binding proteins and cell cycle regulatory proteins. Therefore, comprehensive analysis of the B*0702 peptide repertoire demonstrates that marked differences in host protein presentation occur after HIV infection.  相似文献   
102.
The outer dynein arm-docking complex (ODA-DC) targets the outer dynein arm to its correct binding site on the flagellar axoneme. The Chlamydomonas ODA-DC contains three proteins; loss of any one prevents normal assembly of the outer arm, leading to a slow, jerky swimming phenotype. We showed previously that the smallest ODA-DC subunit, DC3, has four EF-hands (Casey, D. M., Inaba, K., Pazour, G. J., Takada, S., Wakabayashi, K., Wilkerson, C. G., Kamiya, R., and Witman, G. B. (2003) Mol. Biol. Cell 14, 3650-3663). Two of the EF-hands fit the consensus pattern for calcium binding, and one of these contains two cysteine residues within its binding loop. To determine whether the predicted EF-hands are functional, we purified bacterially expressed wild-type DC3 and analyzed its calcium-binding potential in the presence and absence of dithiothreitol and Mg2+. The protein bound one calcium ion with an affinity (Kd) of approximately 1 x 10-5 m. Calcium binding was observed only in the presence of dithiothreitol and thus is redox-sensitive. DC3 also bound Mg2+ at physiological concentrations but with a much lower affinity. Changing the essential glutamate to glutamine in both EF-hands eliminated the calcium binding activity of the bacterially expressed protein. To investigate the role of the EF-hands in vivo, we transformed the modified DC3 gene into a Chlamydomonas insertional mutant lacking DC3. The transformed strain swam normally, assembled a normal number of outer arms, and had a normal photoshock response, indicating that the Glu to Gln mutations did not affect ODA-DC assembly, outer arm assembly, or Ca2+-mediated outer arm activity. Thus, DC3 is a true calcium-binding protein, but the function of this activity remains unknown.  相似文献   
103.
Lott CA  Meehan TD  Heath JA 《Oecologia》2003,134(4):505-510
Hydrogen stable isotope analysis of feathers is an important tool for estimating the natal or breeding latitudes of nearctic-neotropical migratory birds. This method is based on the latitudinal variation of hydrogen stable isotope ratios in precipitation in North America (deltaD(p)) and the inheritance of this variation in newly formed feathers (deltaD(f)). We hypothesized that the typically strong relationship between deltaD(p) and deltaD(f) would be decoupled in birds that forage in marine food webs because marine waters have relatively high deltaD values compared to deltaD values for local precipitation. Birds that forage on marine prey bases should also have feathers with high delta(34)S values, since delta(34)S values for marine sulfate are generally higher than delta(34)S values in terrestrial systems. To examine this potential marine effect on feather stable isotope ratios, we measured deltaD and delta(34)S in the feathers of nine different species of raptors from both inland and coastal locations across North America. Feathers from coastal bird-eating raptors had consistently higher deltaD and delta(34)S values than feathers from inland birds. Birds that had high delta(34)S values also deviated strongly from the typical relationship between deltaD(p) and deltaD(f). We recommend measuring both sulfur and hydrogen stable isotope ratios in feathers when some members of a migrant population could potentially forage in marine habitats. We suggest using a practical cutoff of delta(34)S >10 per thousand to remove marine-foraging birds from a migrant sample when using stable isotopes of hydrogen to estimate the latitudinal origins of migrants because high deltaD(f) values for marine-foraging birds could potentially distort estimates of origins.  相似文献   
104.
Determinants of T box protein specificity   总被引:10,自引:0,他引:10  
  相似文献   
105.
Type I diabetes reduces dramatically the capacity of skeletal muscle to receive oxygen (QO(2)). In control (C; n = 6) and streptozotocin-induced diabetic (D: n = 6, plasma glucose = 25.3 +/- 3.9 mmol/l and C: 8.3 +/- 0.5 mmol/l) rats, phosphorescence quenching was used to test the hypothesis that, in D rats, the decline in microvascular PO(2) [Pm(O(2)), which reflects the dynamic balance between O(2) utilization (VO(2)) and QO(2)] of the spinotrapezius muscle after the onset of electrical stimulation (1 Hz) would be faster compared with that of C rats. Pm(O(2)) data were fit with a one or two exponential process (contingent on the presence of an undershoot) with independent time delays using least-squares regression analysis. In D rats, Pm(O(2)) at rest was lower (C: 31.2 +/- 3.2 mmHg; D: 24.3 +/- 1.3 mmHg, P < 0.05) and at the onset of contractions decreased after a shorter delay (C: 13.5 +/- 1.8 s; D: 7.6 +/- 2.1 s, P < 0.05) and with a reduced mean response time (C: 31.4 +/- 3.3 s; D: 23.9 +/- 3.1 s, P < 0.05). Pm(O(2)) exhibited a marked undershoot of the end-stimulation response in D muscles (D: 3.3 +/- 1.1 mmHg, P < 0.05), which was absent in C muscles. These results indicate an altered VO(2)-to-QO(2) matching across the rest-exercise transition in muscles of D rats.  相似文献   
106.
Jayan GC  Casey JL 《Journal of virology》2002,76(23):12399-12404
Hepatitis delta virus (HDV) requires host RNA editing at the viral RNA amber/W site. Of the two host genes responsible for RNA editing via deamination of adenosines in double-stranded RNAs, short inhibitory RNA-mediated knockdown of host ADAR1 expression but not that of ADAR2 led to decreased HDV amber/W editing and virus production. Despite substantial sequence and structural variation among the amber/W sites of the three HDV genotypes, ADAR1a was primarily responsible for editing all three. We conclude that ADAR1 is primarily responsible for editing HDV RNA at the amber/W site during HDV infection.  相似文献   
107.
108.
Casey JL 《Journal of virology》2002,76(15):7385-7397
RNA editing at the amber/W site plays a central role in the replication scheme of hepatitis delta virus (HDV), allowing the virus to produce two functionally distinct forms of the sole viral protein, hepatitis delta antigen (HDAg), from the same open reading frame. Editing is carried out by a cellular activity known as ADAR (adenosine deaminase), which acts on RNA substrates that are at least partially double stranded. In HDV genotype I, editing requires a highly conserved base-paired structure that occurs within the context of the unbranched rod structure characteristic of HDV RNA. This base-paired structure is disrupted in the unbranched rod of HDV genotype III, which is the most distantly related of the three known HDV genotypes and is associated with the most severe disease. Here I show that RNA editing in HDV genotype III requires a branched double-hairpin structure that deviates substantially from the unbranched rod structure, involving the rearrangement of nearly 80 bp. The structure includes a UNCG RNA tetraloop, a highly stable structural motif frequently involved in the folding of large RNAs such as rRNA. The double-hairpin structure is required for editing, and hence for virion formation, but not for HDV RNA replication, which requires the unbranched rod structure. HDV genotype III thus relies on a dynamic conformational switch between the two different RNA structures: the unbranched rod characteristic of HDV RNA and a branched double-hairpin structure that is required for RNA editing. The different mechanisms of editing in genotypes I and III underscore their functional differences and may be related to pathogenic differences as well.  相似文献   
109.
Hepatitis delta virus (HDV) causes both acute and chronic liver disease throughout the world. Effective medical therapy is lacking. Previous work has shown that the assembly of HDV virus-like particles (VLPs) could be abolished by BZA-5B, a compound with farnesyltransferase inhibitory activity. Here we show that FTI-277, another farnesyltransferase inhibitor, prevented the production of complete, infectious HDV virions of two different genotypes. Thus, in spite of the added complexity and assembly determinants of infectious HDV virions compared to VLPs, the former are also sensitive to pharmacological prenylation inhibition. Moreover, production of HDV genotype III virions, which is associated with particularly severe clinical disease, was as sensitive to prenylation inhibition as was that of HDV genotype I virions. Farnesyltransferase inhibitors thus represent an attractive potential class of novel antiviral agents for use against HDV, including the genotypes associated with most severe disease.  相似文献   
110.
Hepatitis delta virus (HDV) is a subviral human pathogen that uses specific RNA editing activity of the host to produce two essential forms of the sole viral protein, hepatitis delta antigen (HDAg). Editing at the amber/W site of HDV antigenomic RNA leads to the production of the longer form (HDAg-L), which is required for RNA packaging but which is a potent trans-dominant inhibitor of HDV RNA replication. Editing in infected cells is thought to be catalyzed by one or more of the cellular enzymes known as adenosine deaminases that act on RNA (ADARs). We examined the effects of increased ADAR1 and ADAR2 expression on HDV RNA editing and replication in transfected Huh7 cells. We found that both ADARs dramatically increased RNA editing, which was correlated with strong inhibition of HDV RNA replication. While increased HDAg-L production was the primary mechanism of inhibition, we observed at least two additional means by which ADARs can suppress HDV replication. High-level expression of both ADAR1 and ADAR2 led to extensive hyperediting at non-amber/W sites and subsequent production of HDAg variants that acted as trans-dominant inhibitors of HDV RNA replication. Moreover, we also observed weak inhibition of HDV RNA replication by mutated forms of ADARs defective for deaminase activity. Our results indicate that HDV requires highly regulated and selective editing and that the level of ADAR expression can play an important role: overexpression of ADARs inhibits HDV RNA replication and compromises virus viability.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号