首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   577篇
  免费   68篇
  645篇
  2022年   7篇
  2021年   8篇
  2020年   8篇
  2018年   11篇
  2017年   6篇
  2016年   8篇
  2015年   14篇
  2014年   16篇
  2013年   17篇
  2012年   27篇
  2011年   32篇
  2010年   12篇
  2009年   19篇
  2008年   15篇
  2007年   25篇
  2006年   14篇
  2005年   17篇
  2004年   23篇
  2003年   22篇
  2002年   18篇
  2001年   19篇
  2000年   13篇
  1999年   9篇
  1998年   8篇
  1995年   5篇
  1994年   7篇
  1992年   7篇
  1991年   10篇
  1990年   9篇
  1989年   13篇
  1988年   12篇
  1987年   5篇
  1986年   15篇
  1985年   8篇
  1984年   12篇
  1983年   11篇
  1982年   7篇
  1981年   11篇
  1980年   6篇
  1979年   9篇
  1978年   11篇
  1977年   5篇
  1976年   6篇
  1975年   14篇
  1974年   8篇
  1973年   10篇
  1972年   7篇
  1970年   5篇
  1969年   8篇
  1968年   6篇
排序方式: 共有645条查询结果,搜索用时 15 毫秒
61.
Phosphopantetheine adenylyltransferase (PPAT) from Escherichia coli is an essential hexameric enzyme that catalyzes the penultimate step in coenzyme A (CoA) biosynthesis and is a target for antibacterial drug discovery. The enzyme utilizes Mg-ATP and phosphopantetheine (PhP) to generate dephospho-CoA (dPCoA) and pyrophosphate. When overexpressed in E. coli, PPAT copurifies with tightly bound CoA, suggesting a feedback inhibitory role for this cofactor. Using an enzyme-coupled assay for the forward-direction reaction (dPCoA-generating) and isothermal titration calorimetry, we investigated the steady-state kinetics and ligand binding properties of PPAT. All substrates and products bind the free enzyme, and product inhibition studies are consistent with a random bi-bi kinetic mechanism. CoA inhibits PPAT and is competitive with ATP, PhP, and dPCoA. Previously published structures of PPAT crystallized at pH 5.0 show half-the-sites reactivity for PhP and dPCoA and full occupancy by ATP and CoA. Ligand-binding studies at pH 8.0 show that ATP, PhP, dPCoA, and CoA occupy all six monomers of the PPAT hexamer, although CoA exhibits two thermodynamically distinct binding modes. These results suggest that the half-the-sites reactivity observed in PPAT crystal structures may be pH dependent. In light of previous studies on the regulation of CoA biosynthesis, the PPAT kinetic and ligand binding data suggest that intracellular PhP concentrations modulate the distribution of PPAT monomers between high- and low-affinity CoA binding modes. This model is consistent with PPAT serving as a “backup” regulator of pathway flux relative to pantothenate kinase.  相似文献   
62.
We propose a new computational model to predict amide proton chemical shifts in proteins. In addition to the ring-current, susceptibility and electrostatic effects of earlier models, we add a hydrogen-bonding term based on density functional calculations of model peptide–peptide and peptide–water systems. Both distance and angular terms are included, and the results are rationalized in terms of natural bond orbital analysis of the interactions. Comparison to observed shifts for 15 proteins shows a significant improvement over existing structure-shift correlations. These additions are incorporated in a new version of the SHIFTS program.  相似文献   
63.
Selection is frequency dependent when an individual's fitness depends on the frequency of its phenotype. Frequency‐dependent selection should be common in gynodioecious plants, where individuals are female or hermaphroditic; if the fitness of females is limited by the availability of pollen to fertilize their ovules, then they should have higher fitness when rare than when common. To test whether the fitness of females is frequency dependent, we manipulated the sex ratio in arrays of gynodioecious Lobelia siphilitica. To test whether fitness was frequency dependent because of variation in pollen availability, we compared open‐pollinated and supplemental hand‐pollinated plants. Open‐pollinated females produced more seeds when they were rare than when they were common, as expected if fitness is negatively frequency dependent. However, hand‐pollinated females also produced more seeds when they were rare, indicating that variation in pollen availability was not the cause of frequency‐dependent fitness. Instead, fitness was frequency dependent because both hand‐ and open‐pollinated females opened more flowers when they were rare than when they were common. This plasticity in the rate of anthesis could cause fitness to be frequency dependent even when reproduction is not pollen limited, and thus expand the conditions under which frequency‐dependent selection operates in gynodioecious species.  相似文献   
64.
65.
A previous genome-wide association (GWA) meta-analysis of 12,386 PD cases and 21,026 controls conducted by the International Parkinson''s Disease Genomics Consortium (IPDGC) discovered or confirmed 11 Parkinson''s disease (PD) loci. This first analysis of the two-stage IPDGC study focused on the set of loci that passed genome-wide significance in the first stage GWA scan. However, the second stage genotyping array, the ImmunoChip, included a larger set of 1,920 SNPs selected on the basis of the GWA analysis. Here, we analyzed this set of 1,920 SNPs, and we identified five additional PD risk loci (combined p<5×10−10, PARK16/1q32, STX1B/16p11, FGF20/8p22, STBD1/4q21, and GPNMB/7p15). Two of these five loci have been suggested by previous association studies (PARK16/1q32, FGF20/8p22), and this study provides further support for these findings. Using a dataset of post-mortem brain samples assayed for gene expression (n = 399) and methylation (n = 292), we identified methylation and expression changes associated with PD risk variants in PARK16/1q32, GPNMB/7p15, and STX1B/16p11 loci, hence suggesting potential molecular mechanisms and candidate genes at these risk loci.  相似文献   
66.
67.
68.
69.
70.
Interactions between the divalent cation ionophore, A23187, and the divalent cations Ca2+, Mg2+, and Mn2+ were studied in sarcoplasmic reticulum and mitochondria. Conductance measurements suggest that A23187 facilitates the movement of divalent cations across bilayer membranes via a primarily electroneutral process, although a cationic form of A23187 does carry some current.On the basis of fluorescence excitation spectra, A23187 can form either a 1:1 or 2:1 complex with Ca2+ in organic solvents. However, in biological membranes, only the 1:1 complexes with Ca2+, Mg2+, or Mn2+ are detected. A23187 produces fluorescent transients under conditions of Ca2+ uptake in sarcoplasmic reticulum, which appear to represent changes in intramembrane Ca2+ content. Changes in A23187 fluorescence due to mitochondrial Ca2+ accumulation are much smaller by comparison and fluorescence transients are not detected.Studies of A23187 fluorescence polarization and lifetimes in biological membranes allow a determination of the rotational correlation time (ρh) of the ionophore. In mitochondria at 22 °C, ρh is 11 nsec in the presence of Ca2+ and Mg2+, and less than 2 nsec in the presence of excess EDTA.The present results are consistent with a model of ionophore-mediated cation transport in which free M2+ binds with A23187 at the membrane surface to form the complex M(A23187)+. Reaction of this complex with another molecule of A23187 at the membrane surfaces results in the formation of electrically neutral M(A23187)2, which carries the divalent cation through the membrane.These results are discussed in terms of physical properties of biological membranes in regions in which divalent cation transport occurs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号