首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   505篇
  免费   56篇
  2018年   7篇
  2017年   3篇
  2016年   8篇
  2015年   4篇
  2014年   15篇
  2013年   12篇
  2012年   14篇
  2011年   21篇
  2010年   14篇
  2009年   15篇
  2008年   17篇
  2007年   10篇
  2006年   11篇
  2005年   19篇
  2004年   19篇
  2003年   16篇
  2002年   15篇
  2001年   16篇
  2000年   22篇
  1999年   14篇
  1998年   11篇
  1997年   16篇
  1996年   16篇
  1995年   8篇
  1994年   11篇
  1993年   20篇
  1992年   15篇
  1991年   11篇
  1990年   25篇
  1989年   23篇
  1988年   17篇
  1987年   18篇
  1986年   12篇
  1985年   4篇
  1984年   4篇
  1982年   3篇
  1981年   3篇
  1980年   3篇
  1979年   4篇
  1976年   3篇
  1973年   4篇
  1971年   5篇
  1970年   3篇
  1967年   3篇
  1953年   2篇
  1939年   2篇
  1926年   2篇
  1924年   3篇
  1923年   2篇
  1919年   2篇
排序方式: 共有561条查询结果,搜索用时 15 毫秒
241.
Interleukin-6 (IL-6) is a pleiotropic cytokine that regulates immune and inflammatory responses, and its overproduction is a hallmark of inflammatory diseases. Inhibition of IL-6 signaling with the anti-IL-6 receptor antibody tocilizumab has provided some clinical benefit to patients; however, direct cytokine inhibition may be a more effective option. We used the systematic evolution of ligands by exponential enrichment (SELEX) process to discover slow off-rate modified aptamers (SOMAmers) with hydrophobic base modifications that inhibit IL-6 signaling in vitro. Two classes of IL-6 SOMAmers were isolated from modified DNA libraries containing 40 random positions and either 5-(N-benzylcarboxamide)-2′-deoxyuridine (Bn-dU) or 5-[N-(1-naphthylmethyl)carboxamide]-2′-deoxyuridine (Nap-dU) replacing dT. These modifications facilitate the high affinity binding interaction with IL-6 and provide resistance against degradation by serum endonucleases. Post-SELEX optimization of one Bn-dU and one Nap-dU SOMAmer led to improvements in IL-6 binding (10-fold) and inhibition activity (greater than 20-fold), resulting in lead SOMAmers with sub-nanomolar affinity (Kd = 0.2 nm) and potency (IC50 = 0.2 nm). Although similar in inhibition properties, the two SOMAmers have unique sequences and different ortholog specificities. Furthermore, these SOMAmers were stable in human serum in vitro for more than 48 h. Both SOMAmers prevented IL-6 signaling by blocking the interaction of IL-6 with its receptor and inhibited the proliferation of tumor cells in vitro as effectively as tocilizumab. This new class of IL-6 inhibitor may be an effective therapeutic alternative for patients suffering from inflammatory diseases.  相似文献   
242.
Arabidopsis (Arabidopsis thaliana) tryptophan-proline-proline (WPP)-domain proteins, WPP1 and WPP2, are plant-unique, nuclear envelope-associated proteins of unknown function. They have sequence similarity to the nuclear envelope-targeting domain of plant RanGAP1, the GTPase activating protein of the small GTPase Ran. WPP domain-interacting tail-anchored protein 1 (WIT1) and WIT2 are two Arabidopsis proteins containing a coiled-coil domain and a C-terminal predicted transmembrane domain. They are required for RanGAP1 association with the nuclear envelope in root tips. Here, we show that WIT1 also binds WPP1 and WPP2 in planta, we identify the chaperone heat shock cognate protein 70-1 (HSC70-1) as in vivo interaction partner of WPP1 and WPP2, and we show that HSC70-1 interacts in planta with WIT1. WIT1 and green fluorescent protein (GFP)-WIT1 are targeted to the nuclear envelope in Arabidopsis. In contrast, GFP-WIT1 forms large cytoplasmic aggregates when overexpressed transiently in Nicotiana benthamiana leaf epidermis cells. Coexpression of HSC70-1 significantly reduces GFP-WIT1 aggregation and permits association of most GFP-WIT1 with the nuclear envelope. Significantly, WPP1 and WPP2 show the same activity. A WPP1 mutant with reduced affinity for GFP-WIT1 fails to decrease its aggregation. While the WPP-domain proteins act on a region of WIT1 containing the coiled-coil domain, HSC70-1 additionally acts on the C-terminal transmembrane domain. Taken together, our data suggest that both HSC70-1 and the WPP-domain proteins play a role in facilitating WIT1 nuclear envelope targeting, which is, to our knowledge, the first described in planta activity for the WPP-domain proteins.The cytoplasmic Ran GTPase activating protein RanGAP is critical to establishing a functional RanGTP/RanGDP gradient across the nuclear envelope (NE) and is associated with the outer surface of the NE in metazoan and higher plant cells (Matunis et al., 1996; Rose and Meier, 2001). Plant RanGAP1 association with the NE requires a plant-specific targeting domain, named the Trp-Pro-Pro (WPP) domain (Rose and Meier, 2001). Arabidopsis (Arabidopsis thaliana) WPP1 and WPP2 are small (155- and 180-amino-acid residues, respectively) plant-unique proteins of unknown function, which are similar to the WPP domain of RanGAP proteins. WPP1 and WPP2 are located in the cytoplasm, with a concentration at the NE (Patel et al., 2004). They are characterized by a 104-amino-acid-long WPP domain, predicted to consist of a β-strand and three α-helices and shown to be sufficient for NE targeting (Patel et al., 2004). They are also associated with cytoplasmic speckles most likely representing Golgi (Patel et al., 2005). Reduced expression of the WPP protein family causes decreased mitotic activity in roots of Arabidopsis, resulting in shortening of primary roots and decreased number of lateral roots (Patel et al., 2004). RanGAP1 association with the NE in the Arabidopsis root tip requires two families of NE-localized, plant-specific, WPP domain-interacting proteins (WPP domain-interacting protein [WIP] and WPP domain-interacting tail-anchored protein [WIT] families) that are characterized by the presence of a coiled-coil domain and a C-terminal predicted transmembrane domain (TMD; Xu et al., 2007; Zhao et al., 2008). Based on sequence analysis, both the WIP and WIT protein family were classified as putative tail-anchored (TA) proteins, proteins that associate with membranes posttranslationally (Borgese et al., 2003).The heat shock protein 70 family (HSP70) contains both heat-inducible and constitutively expressed members, called heat shock cognate proteins (HSC70). HSC70 chaperones assist in folding newly synthesized proteins (Bukau and Horwich, 1998), are involved in posttranslational translocation of secretory proteins across endoplasmic reticulum (ER) and mitochondrial membranes (Chirico et al., 1988; Deshaies et al., 1988), prevent irreversible aggregation of their substrates (Ngosuwan et al., 2003), and facilitate degradation of misfolded proteins (Meacham et al., 2001). Recently, mammalian HSC70 has also been implied in assisting the membrane insertion of a subset of TA proteins (Abell et al., 2007).The Arabidopsis genome encodes five different cytosolic HSP70s, three of which are expressed constitutively (HSC70-1, HSC70-2, and HSC70-3). While expressed in all organs, Hsc70-1 and Hsc70-2 expression levels are highest in leaves and Hsc70-3 in leaves and roots. All three genes can be further induced by heat shock and cold stress (Sung et al., 2001). Constitutive overexpression of Arabidopsis Hsc70-1 in transgenic plants leads to changes in growth and development, increases thermotolerance (Sung and Guy, 2003), and decreases the plant''s ability to respond to pathogen attack (Noel et al., 2007). Recently, specific interactions of HSC70-1 with SGT1 (for Suppressor of G2 allele of skp1; Noel et al., 2007) and HSC70-3 with turnip mosaic virus RNA-dependent RNA polymerase (Dufresne et al., 2008) were identified, suggesting a role of HSC70 in viral replication and pathogenesis. Both HSC70-1 and HSC70-3 can be detected in the nuclei and the cytoplasm of Nicotiana benthamiana epidermal cells (Noel et al., 2007; Dufresne et al., 2008).Here, we identified Arabidopsis HSC70-1 as an in vivo interaction partner of WPP1 and WPP2 and demonstrated that HSC70-1 associates with WIT1. Using transient expression in N. benthamiana, we show that when expressed at a high level, WIT1 accumulates in large fluorescent bodies in the cytoplasm that may represent aggregates. Upon coexpression in the same system, WPP1, WPP2, and HSC70-1 are all able to prevent the aggregation of overexpressed WIT1 and enable WIT1 association with the NE. While WPP-domain proteins act on a region of WIT1 containing the coiled-coil domain, HSC70-1 additionally acts on the C-terminal TMD. We propose that WPP1 and WPP2 play a chaperone-like role reflected in preventing the aggregation of the coiled-coil region of WIT1 and possibly other coiled-coil TA-type proteins, either in conjunction or independently of HSC70-type chaperones.  相似文献   
243.
To exit blood vessels, most (~80%) of the lumenally adhered monocytes and neutrophils crawl toward locations that support transmigration. Using intravital confocal microscopy of anesthetized mouse cremaster muscle, we separately examined the crawling and emigration patterns of monocytes and neutrophils in blood-perfused unstimulated or TNF-α-activated venules. Most of the interacting cells in microvessels are neutrophils; however, in unstimulated venules, a greater percentage of the total monocyte population is adherent compared with neutrophils (58.2 ± 6.1% versus 13.6 ± 0.9%, adhered/total interacting), and they crawl for significantly longer distances (147.3 ± 13.4 versus 61.8 ± 5.4 μm). Intriguingly, after TNF-α activation, monocytes crawled for significantly shorter distances (67.4 ± 9.6 μm), resembling neutrophil crawling. Using function-blocking Abs, we show that these different crawling patterns were due to CD11a/CD18 (LFA-1)- versus CD11b/CD18 (Mac-1)-mediated crawling. Blockade of either Mac-1 or LFA-1 revealed that both LFA-1 and Mac-1 contribute to monocyte crawling; however, the LFA-1-dependent crawling in unstimulated venules becomes Mac-1 dependent upon inflammation, likely due to increased expression of Mac-1. Mac-1 alone was responsible for neutrophil crawling in both unstimulated and TNF-α-activated venules. Consistent with the role of Mac-1 in crawling, Mac-1 block (compared with LFA-1) was also significantly more efficient in blocking TNF-α-induced extravasation of both monocytes and neutrophils in cremaster tissue and the peritoneal cavity. Thus, mechanisms underlying leukocyte crawling are important in regulating the inflammatory responses by regulating the numbers of leukocytes that transmigrate.  相似文献   
244.
Gan J  Tropea JE  Austin BP  Court DL  Waugh DS  Ji X 《Cell》2006,124(2):355-366
Members of the ribonuclease III (RNase III) family are double-stranded RNA (dsRNA) specific endoribonucleases characterized by a signature motif in their active centers and a two-base 3' overhang in their products. While Dicer, which produces small interfering RNAs, is currently the focus of intense interest, the structurally simpler bacterial RNase III serves as a paradigm for the entire family. Here, we present the crystal structure of an RNase III-product complex, the first catalytic complex observed for the family. A 7 residue linker within the protein facilitates induced fit in protein-RNA recognition. A pattern of protein-RNA interactions, defined by four RNA binding motifs in RNase III and three protein-interacting boxes in dsRNA, is responsible for substrate specificity, while conserved amino acid residues and divalent cations are responsible for scissile-bond cleavage. The structure reveals a wealth of information about the mechanism of RNA hydrolysis that can be extrapolated to other RNase III family members.  相似文献   
245.
An ultradense genetic linkage map with >10,000 AFLP loci was constructed from a heterozygous diploid potato population. To our knowledge, this is the densest meiotic recombination map ever constructed. A fast marker-ordering algorithm was used, based on the minimization of the total number of recombination events within a given marker order in combination with genotyping error-detection software. This resulted in "skeleton bin maps," which can be viewed as the most parsimonious marker order. The unit of distance is not expressed in centimorgans but in "bins." A bin is a position on the genetic map with a unique segregation pattern that is separated from adjacent bins by a single recombination event. Putative centromeres were identified by a strong clustering of markers, probably due to cold spots for recombination. Conversely, recombination hot spots resulted in large intervals of up to 15 cM without markers. The current level of marker saturation suggests that marker density is proportional to physical distance and independent of recombination frequency. Most chromatids (92%) recombined once or never, suggesting strong chiasma interference. Absolute chiasma interference within a chromosome arm could not be demonstrated. Two examples of contig construction and map-based cloning have demonstrated that the marker spacing was in accordance with the expected physical distance: approximately one marker per BAC length. Currently, the markers are used for genetic anchoring of a physical map of potato to deliver a sequence-ready minimal tiling path of BAC contigs of specific chromosomal regions for the potato genome sequencing consortium (http://www.potatogenome.net).  相似文献   
246.
The most abundant and widely expressed mammalian phosphoinositide kinase activity is contributed by phosphatidylinositol 4-kinase IIalpha (PI4KIIalpha). In this study we demonstrate that PI4KIIalpha is a novel GTP-independent target of the wasp venom tetradecapeptide mastoparan and that different mechanisms of activation occur in different subcellular membranes. Following cell membrane fractionation mastoparan specifically stimulated a high activity Golgi/endosomal pool of PI4KIIalpha independently of exogenous guanine nucleotides. Conversely, GTPgammaS stimulated a low activity pool of PI4KIIalpha in a separable dense membrane fraction and this response was further enhanced by mastoparan. Overexpression of PI4KIIalpha increased the basal phosphatidylinositol 4-kinase activity of each membrane pool, as well as the mastoparan-dependent activities, thereby demonstrating that mastoparan specifically activates this isozyme. Both mastoparan and M7, at concentrations known to invoke secretion, stimulated PI4KIIalpha with similar efficacies, resulting in an increase in the apparent V(max) and decrease in K(m) for exogenously added PI. Mastoparan also stimulated PI4KIIalpha immunoprecipitated from the raft fraction, indicating that PI4KIIalpha is a direct target of mastoparan. Finally we reveal a striking dependence of both basal and mastoparan-stimulated PI4KIIalpha activity on endogenous cholesterol concentration and therefore conclude that changes in membrane environment can regulate PI4KIIalpha activity.  相似文献   
247.
It is well established that certain highly soluble proteins have the ability to enhance the solubility of their fusion partners. However, very little is known about how different solubility enhancers compare in terms of their ability to promote the proper folding of their passenger proteins. We compared the ability of two well-known solubility enhancers, Escherichia coli maltose-binding protein (MBP) and N utilization substance A (NusA), to improve the solubility and promote the proper folding of a variety of passenger proteins that are difficult to solubilize. We used an intracellular processing system to monitor the solubility of these passenger proteins after they were cleaved from MBP and NusA by tobacco etch virus protease. In addition, the biological activity of some fusion proteins was compared to serve as a more quantitative indicator of native structure. The results indicate that MBP and NusA have comparable solubility-enhancing properties. Little or no difference was observed either in the solubility of passenger proteins after intracellular processing of the MBP and NusA fusion proteins or in the biological activity of solubilized passenger proteins, suggesting that the underlying mechanism of solubility enhancement is likely to be similar for both the proteins, and that they play a passive role rather than an active one in the folding of their fusion partners.  相似文献   
248.
Smallpox, a highly contagious infectious disease caused by the variola major virus, has an overall mortality rate of about 30%. Because there currently is no specific treatment for smallpox, and the only prevention is vaccination, there is an urgent need for the development of effective antiviral drugs. The dual specificity protein phosphatase encoded by the smallpox virus (H1) is essential for the production of infectious viral particles, making it a promising molecular target for antiviral therapeutics. Here, we report the molecular cloning, overproduction, purification, and initial biochemical characterization of H1 phosphatase, thereby paving the way for the discovery of small molecule inhibitors.  相似文献   
249.
We have previously shown that linkage disequilibrium (LD) in the elite cultivated barley (Hordeum vulgare) gene pool extends, on average, for <1-5 cM. Based on this information, we have developed a platform for whole genome association studies that comprises a collection of elite lines that we have characterized at 3060 genome-wide single nucleotide polymorphism (SNP) marker loci. Interrogating this data set shows that significant population substructure is present within the elite gene pool and that diversity and LD vary considerably across each of the seven barley chromosomes. However, we also show that a subpopulation comprised of only the two-rowed spring germplasm is less structured and well suited to whole genome association studies without the need for extensive statistical intervention to account for structure. At the current marker density, the two-rowed spring population is suited for fine mapping simple traits that are located outside of the genetic centromeres with a resolution that is sufficient for candidate gene identification by exploiting conservation of synteny with fully sequenced model genomes and the emerging barley physical map.  相似文献   
250.

Background

In this study, a multi-parent population of barley cultivars was grown in the field for two consecutive years and then straw saccharification (sugar release by enzymes) was subsequently analysed in the laboratory to identify the cultivars with the highest consistent sugar yield. This experiment was used to assess the benefit of accounting for both the multi-phase and multi-environment aspects of large-scale phenotyping experiments with field-grown germplasm through sound statistical design and analysis.

Results

Complementary designs at both the field and laboratory phases of the experiment ensured that non-genetic sources of variation could be separated from the genetic variation of cultivars, which was the main target of the study. The field phase included biological replication and plot randomisation. The laboratory phase employed re-randomisation and technical replication of samples within a batch, with a subset of cultivars chosen as duplicates that were randomly allocated across batches. The resulting data was analysed using a linear mixed model that incorporated field and laboratory variation and a cultivar by trial interaction, and ensured that the cultivar means were more accurately represented than if the non-genetic variation was ignored. The heritability detected was more than doubled in each year of the trial by accounting for the non-genetic variation in the analysis, clearly showing the benefit of this design and approach.

Conclusions

The importance of accounting for both field and laboratory variation, as well as the cultivar by trial interaction, by fitting a single statistical model (multi-environment trial, MET, model), was evidenced by the changes in list of the top 40 cultivars showing the highest sugar yields. Failure to account for this interaction resulted in only eight cultivars that were consistently in the top 40 in different years. The correspondence between the rankings of cultivars was much higher at 25 in the MET model. This approach is suited to any multi-phase and multi-environment population-based genetic experiment.
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号