首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   422篇
  免费   84篇
  506篇
  2022年   3篇
  2021年   5篇
  2020年   2篇
  2019年   8篇
  2018年   6篇
  2017年   7篇
  2016年   14篇
  2015年   16篇
  2014年   22篇
  2013年   23篇
  2012年   37篇
  2011年   17篇
  2010年   16篇
  2009年   17篇
  2008年   13篇
  2007年   12篇
  2006年   22篇
  2005年   22篇
  2004年   26篇
  2003年   19篇
  2002年   9篇
  2001年   13篇
  2000年   12篇
  1999年   11篇
  1998年   11篇
  1997年   8篇
  1996年   7篇
  1995年   10篇
  1994年   7篇
  1993年   6篇
  1992年   10篇
  1991年   3篇
  1990年   4篇
  1989年   4篇
  1988年   7篇
  1987年   3篇
  1986年   4篇
  1985年   11篇
  1984年   5篇
  1983年   7篇
  1982年   7篇
  1981年   5篇
  1980年   7篇
  1979年   3篇
  1978年   4篇
  1976年   2篇
  1975年   3篇
  1974年   3篇
  1973年   2篇
  1932年   2篇
排序方式: 共有506条查询结果,搜索用时 15 毫秒
51.
Grb2-associated binder 1 (Gab1) is known to play an important role in hepatocyte growth factor (HGF) signaling, which rapidly becomes tyrosine-phosphorylated upon HGF stimulation. In this study, we found that the tyrosine phosphorylation of Gab1 in the cells derived from Src/Yes/Fyn null mouse embryos was approximately 40% lower than that in their wild type counterparts upon HGF stimulation. Increased expression of wild-type Src enhanced HGF-induced phosphorylation of Gab1, and, in contrast, expression of the Src kinase-deficient mutant or treatment of the specific Src inhibitor PP1 suppressed it. Expression of a constitutively active Src mutant (Y527F) or oncogenic v-Src led to a prominent increase in Gab1 phosphorylation independent of HGF stimulation. Moreover, Src interacted with Gab1 via both its Src homology 2 and 3 domains and was capable of phosphorylating purified Gab1 in vitro. Finally, the increased phosphorylation of Gab1 by Src selectively potentiated HGF-induced activation of ERK and AKT. Taken together, our results establish a new role for Src in HGF-induced Gab1 phosphorylation.  相似文献   
52.
Oxidative stress has been implicated in intra-abdominal adhesion formation. Substance P, a neurokinin-1 receptor (NK-1R) ligand, facilitates leukocyte recruitment and reactive oxygen species (ROS) generation. We have shown in a rat model of adhesion formation that intraperitoneal administration of a NK-1R antagonist at the time of abdominal operation reduces postoperative adhesion formation. Thus we determined the effects of NK-1R antagonist administration on peritoneal leukocyte recruitment and oxidative stress within 24 h of surgery. Adhesions were induced in Wistar rats randomly assigned to receive the antagonist or vehicle intraperitoneally. Peritoneal tissue was isolated at 2, 4, 6, and 24 h after surgery for analysis of the oxidative stress biomarkers 8-isoprostane (8-IP), protein carbonyl, NADPH oxidase, myeloperoxidase (MPO), and ICAM-1 and VCAM-1 mRNAs. Total antioxidant capacity of peritoneal fluid was also determined. MPO, NADPH oxidase, 8-IP, and protein carbonyl were elevated (P < 0.05) by 6 h. ICAM-1 mRNA was elevated (P < 0.05) by 2 h, whereas VCAM-1 levels decreased (P < 0.05) at 24 h. The NK-1R antagonist delayed the MPO rise and reduced (P < 0.05) 8-IP levels by 6 h and ICAM-1 mRNA, VCAM-1 mRNA, and protein carbonyl at 2 h. The antagonist also increased (P < 0.05) the antioxidant capacity of peritoneal fluid at all time points. These data further support a role for oxidative stress in adhesion formation and suggest that the NK-1R antagonist may limit adhesions, in part, by reducing postoperative oxidative stress through an inhibition of neutrophil recruitment and an increase in peritoneal fluid antioxidant capacity.  相似文献   
53.
June sucker (Chasmistes liorus) is a long-lived, endangered fish endemic to Utah Lake, Utah. For several decades June sucker have failed to recruit sufficient numbers to the adult size classes such that the current wild population consists of a small number of old adults and it continues to decline. Vital rates of June sucker are influenced by climate-driven variation in lake level and inflow from the Provo River. We used population projection matrix modeling to assess effects of cyclic and stochastic environmental variation on population growth trajectories of June sucker in Utah Lake. The stable stage distribution is dominated by stage 1 individuals (93% of the total population) in contrast to the current situation where old age classes are the most abundant. Total population size is highly influenced by the stochastic component of climate variation; whereas, the adult population of June sucker closely tracks the systematic drought cycle. If changes in survival of larvae and juveniles can be coordinated such that positive changes in both parameters can occur somewhat simultaneously, then each parameter would only have to be increased by a factor of about 8.8 to achieve sustainable population growth (compared to a 77-fold increase for each parameter separately). Stochastic climatic variation has relatively little long-term effect on population growth. However, the multidecadal cyclic pattern of lake level and river discharge imposes a similar pattern on population growth rates of the June sucker, such that during some periods, populations decline even when the long-term trend is positive.  相似文献   
54.
Due to the limited coding capacity of their small genomes, human papillomaviruses (HPV) rely extensively on host factors for the completion of their life cycles. Accordingly, most HPV proteins, including the replicative helicase E1, engage in multiple protein interactions. The fact that conserved regions of E1 have not yet been ascribed a function prompted us to use tandem affinity protein purification (TAP) coupled to mass spectrometry to identify novel targets of this helicase. This method led to the discovery of a novel interaction between the N-terminal 40 amino acids of HPV type 11 (HPV11) E1 and the cellular WD repeat protein p80 (WDR48). We found that interaction with p80 is conserved among E1 proteins from anogenital HPV but not among cutaneous or animal types. Colocalization studies showed that E1 can redistribute p80 from the cytoplasm to the nucleus in a manner that is dependent on the E1 nuclear localization signal. Three amino acid substitutions in E1 proteins from HPV11 and -31 were identified that abrogate binding to p80 and its relocalization to the nucleus. In HPV31 E1, these substitutions reduced but did not completely abolish transient viral DNA replication. HPV31 genomes encoding two of the mutant E1 proteins were not maintained as episomes in immortalized primary keratinocytes, whereas one encoding the third mutant protein was maintained at a very low copy number. These findings suggest that the interaction of E1 with p80 is required for efficient maintenance of the viral episome in undifferentiated keratinocytes.  相似文献   
55.
The C terminus of the herpes simplex virus type 1 origin-binding protein, UL9ct, interacts directly with the viral single-stranded DNA-binding protein ICP8. We show that a 60-amino acid C-terminal deletion mutant of ICP8 (ICP8ΔC) also binds very strongly to UL9ct. Using small angle x-ray scattering, the low resolution solution structures of UL9ct alone, in complex with ICP8ΔC, and in complex with a 15-mer double-stranded DNA containing Box I of the origin of replication are described. Size exclusion chromatography, analytical ultracentrifugation, and electrophoretic mobility shift assays, backed up by isothermal titration calorimetry measurements, are used to show that the stoichiometry of the UL9ct-dsDNA15-mer complex is 2:1 at micromolar protein concentrations. The reaction occurs in two steps with initial binding of UL9ct to DNA (Kd ∼ 6 nm) followed by a second binding event (Kd ∼ 0.8 nm). It is also shown that the stoichiometry of the ternary UL9ct-ICP8ΔC-dsDNA15-mer complex is 2:1:1, at the concentrations used in the different assays. Electron microscopy indicates that the complex assembled on the extended origin, oriS, rather than Box I alone, is much larger. The results are consistent with a simple model whereby a conformational switch of the UL9 DNA-binding domain upon binding to Box I allows the recruitment of a UL9-ICP8 complex by interaction between the UL9 DNA-binding domains.The initiation of DNA replication for most double-stranded DNA (dsDNA)6 viral genomes begins with the recognition of the origin by specific origin-binding proteins. The herpes simplex virus type 1 (HSV-1) genome encodes seven proteins required for origin-dependent DNA replication. These are the DNA polymerase (UL30) and its accessory protein (UL42), a heterotrimeric helicase-primase complex (UL5, UL8, and UL52), the single-stranded DNA-binding protein (ICP8 or UL29), and the origin-binding protein (UL9) (reviewed in Ref. 1). HSV-1 contains three functional origins, oriL and two copies of oriS. OriS, which is about 80 bp in length, consists of three UL9 recognition sites, in Boxes I, II, and III, which are arranged in two overlapping palindromes (2). Box I and Box III are part of an evolutionarily conserved palindrome that forms a stable hairpin in single-stranded DNA, which may be important in the origin rearrangement (3) during initiation of replication. Box I and II are separated by an AT-rich spacer sequence, which varies in length and nucleotide composition between the different members of the α-herpesvirus subfamily (2, 46).UL9 is a homodimer in solution, and EM studies, with UL9 bound to oriS, indicate the existence of a dimer or pair of dimers assembled on oriS (7). Several reports indicate that UL9 can physically interact not only with ICP8 (8) but also with other members of the HSV-1 replication complex, including UL8 (9) and UL42 (10). Thus UL9 functions as a docking protein to recruit these essential replication proteins to the viral origins. ICP8 stimulates the helicase activity of UL9 (11, 12) and binds to its C-terminal 27-aa residues (13). In the presence of ICP8, UL9 will open dsDNA containing Box I, leading to a conformational change in the origin, thus facilitating unwinding (1416). As stated above, the changes in DNA conformation in the complete oriS may be more complex (3). Recently, it has been suggested that single-stranded oriS folds into a unique and evolutionarily conserved conformation, oriS*, which is stably bound by UL9. oriS* contains a hairpin formed by complementary base pairing between Box I and Box III in oriS (17). UL9, in the presence of the single-stranded DNA-binding protein ICP8, can convert an 80-bp double-stranded minimal oriS fragment to oriS* and form a UL9-oriS* complex. The formation of a UL9-oriS* complex requires ATP hydrolysis (18). Therefore, the UL9-oriS* complex may serve as an assembly site for the herpesvirus replisome. Macao et al. (3) proposed a model in which full-length UL9 would be required to adopt a different conformation when binding to oriS or oriS*. The implication is that UL9 partially unwinds and introduces a hairpin into the origin of replication and that the formation of oriS* is aided, in some way, by ICP8 and requires ATP hydrolysis. Macao et al. (3) suggest that the length of the single-stranded tail of the probe DNA determines the stoichiometry of the UL9-DNA complex. oriS may bind two molecules of UL9, whereas oriS* may only bind one because the hairpin formation prevents the second interaction.Photo-cross-linking studies have shown that, although the UL9 protein binds Box I as a dimer, only one of the two monomers contacts Box I, suggesting that the C terminus of UL9 undergoes a conformational change upon binding to Box I (19). The results reported here are consistent with this observation. To date there is no three-dimensional structural information available on the full-length UL9 or either of the functionally characterized (helicase and DNA binding) domains. The ability to adopt different conformations and a tendency to proteolytic degradation may be responsible for this. It has been shown that UL9 binds with very high specificity to the Box I through its DNA-binding domain, consisting of the C-terminal 317 aa (UL9ct) (20, 21). Although the importance of the binding between UL9ct and oriS for the viral life cycle is well established, the mechanism behind this interaction still remains unclear. Even though UL9ct exists as a monomer in solution, uncertainty remains as to whether one or two molecules bind to a single Box I recognition sequence. Some reports have suggested that one UL9ct molecule binds to a single copy of the sequence (2224), whereas others have proposed that UL9ct forms a dimer when bound to DNA (25, 26). This apparent difference may well result from the different protein concentrations used in different assays/experiments, which in turn highlights the difficulty of translating in vitro equilibrium experiments into cellular nonequilibrium situations.A few years ago, the crystal structure of a 60-residue C-terminal deletion mutant of ICP8 (ICP8ΔC) was determined to 3 Å resolution (Protein Data Bank code 1URJ (27)). The structure of ICP8ΔC consists of a large N-terminal domain (aa 9–1038) and a smaller entirely helical C-terminal domain (aa 1049–1120) connected to the N-terminal domain by a disordered linker (aa 1038–1049) spanning around 18 Å in the crystal structure. ICP8 preferentially binds ssDNA over dsDNA in a nonsequence-specific and cooperative manner (28). ICP8 is a zinc metalloprotein containing one zinc atom per molecule, which is coordinated by three cysteines (Cys-499, Cys-502, and Cys-510) and a histidine (His-512) (27).In this study, we show that the 60-amino acid C-terminal deletion of ICP8 (ICP8ΔC) binds strongly to UL9ct. We present three low resolution structures in solution using small angle x-ray scattering as follows: that of the UL9ct alone, in complex with ICP8ΔC, and in complex with a 15-mer dsDNA (dsDNA15-mer) containing the Box I sequence. Using these data and a variety of biophysical techniques, we demonstrate that the stoichiometries of the UL9ct-dsDNA15-mer and UL9ct-ICP8ΔC-dsDNA15-mer complexes are 2:1 and 2:1:1, respectively, at the micromolar protein concentrations used in this study. Using EM we visualize the assembly of the ICP8ΔC-UL9ct complex on oriS and estimate the size of the complex.  相似文献   
56.
57.
58.
Cary JW  Ehrlich KC 《Mycopathologia》2006,162(3):167-177
Aflatoxins (AFs) are toxic and carcinogenic secondary metabolites produced by isolates of Aspergillus section Flavi as well as a number of Aspergillus isolates that are classified outside of section Flavi. Characterization of the AF and sterigmatocystin (ST) gene clusters and analysis of factors governing regulation of their biosynthesis has resulted in these two mycotoxins being the most extensively studied of fungal secondary metabolites. This wealth of information has allowed the determination of the molecular basis for non-production of AF in natural isolates of A. flavus and domesticated strains of A. oryzae. This review provides an overview of the molecular analysis of the AF and ST gene clusters as well as new information on an AF gene cluster identified in the non-section Flavi isolate, Aspergillus ochraceoroseus. Additionally, molecular phylogenetic analysis using AF biosynthetic gene sequences as well as ribosomal DNA internal transcribed spacer (ITS) sequences between various section Flavi and non-section Flavi species has enabled determination of the probable evolutionary history of the AF and ST gene clusters. A model for the evolution of the AF and ST gene clusters as well as possible biological roles for AF are discussed.  相似文献   
59.
60.

Background  

More optimistic perceptions of cardiovascular disease risk are associated with substantively lower rates of cardiovascular death among men. It remains unknown whether this association represents causality (i.e. perception leads to actions/conditions that influence cardiovascular disease occurrence) or residual confounding by unmeasured factors that associate with risk perceptions and with physiological processes that promote cardiovascular disease (i.e. inflammation or endothelial dysfunction).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号