首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10666篇
  免费   1414篇
  2022年   105篇
  2021年   219篇
  2020年   126篇
  2019年   167篇
  2018年   188篇
  2017年   140篇
  2016年   294篇
  2015年   462篇
  2014年   540篇
  2013年   575篇
  2012年   817篇
  2011年   789篇
  2010年   514篇
  2009年   441篇
  2008年   574篇
  2007年   630篇
  2006年   615篇
  2005年   626篇
  2004年   570篇
  2003年   489篇
  2002年   519篇
  2001年   146篇
  2000年   132篇
  1999年   139篇
  1998年   116篇
  1997年   78篇
  1996年   71篇
  1995年   74篇
  1994年   72篇
  1993年   84篇
  1992年   124篇
  1991年   91篇
  1990年   90篇
  1989年   92篇
  1988年   82篇
  1987年   88篇
  1986年   64篇
  1985年   66篇
  1984年   81篇
  1983年   59篇
  1982年   53篇
  1981年   47篇
  1980年   63篇
  1979年   58篇
  1978年   57篇
  1977年   49篇
  1976年   60篇
  1975年   51篇
  1974年   47篇
  1973年   50篇
排序方式: 共有10000条查询结果,搜索用时 348 毫秒
971.
Isolation of the Hawaiian archipelago produced a highly endemic and unique avifauna. Avian malaria (Plasmodium relictum), an introduced mosquito‐borne pathogen, is a primary cause of extinctions and declines of these endemic honeycreepers. Our research assesses how global climate change will affect future malaria risk and native bird populations. We used an epidemiological model to evaluate future bird–mosquito–malaria dynamics in response to alternative climate projections from the Coupled Model Intercomparison Project. Climate changes during the second half of the century accelerate malaria transmission and cause a dramatic decline in bird abundance. Different temperature and precipitation patterns produce divergent trajectories where native birds persist with low malaria infection under a warmer and dryer projection (RCP4.5), but suffer high malaria infection and severe reductions under hot and dry (RCP8.5) or warm and wet (A1B) futures. We conclude that future global climate change will cause significant decreases in the abundance and diversity of remaining Hawaiian bird communities. Because these effects appear unlikely before mid‐century, natural resource managers have time to implement conservation strategies to protect this unique avifauna from further decimation. Similar climatic drivers for avian and human malaria suggest that mitigation strategies for Hawai'i have broad application to human health.  相似文献   
972.
973.
Faecalibacterium prausnitzii, an abundant member of the human commensal microbiota, has been proposed to have a protective role in the intestine. However, it is an obligate anaerobe, difficult to co‐culture in viable form with oxygen‐requiring intestinal cells. To overcome this limitation, a unique apical anaerobic model of the intestinal barrier, which enabled co‐culture of live obligate anaerobes with the human intestinal cell line Caco‐2, was developed. Caco‐2 cells remained viable and maintained an intact barrier for at least 12 h, consistent with gene expression data, which suggested Caco‐2 cells had adapted to survive in an oxygen‐reduced atmosphere. Live F. prausnitzii cells, but not ultraviolet (UV)‐killed F. prausnitzii, increased the permeability of mannitol across the epithelial barrier. Gene expression analysis showed inflammatory mediators to be expressed at lower amounts in Caco‐2 cells exposed to live F. prausnitzii than UV‐killed F. prausnitzii, This, consistent with previous reports, implies that live F. prausnitzii produces an anti‐inflammatory compound in the culture supernatant, demonstrating the value of a physiologically relevant co‐culture system that allows obligate anaerobic bacteria to remain viable.  相似文献   
974.
975.
IntroductionAs patients with rheumatoid arthritis (RA) receive treatment with anti-tumour necrosis factors over several years, it is important to evaluate their long-term safety and efficacy. The objective of this study was to examine the safety and benefits of certolizumab pegol (CZP)+methotrexate (MTX) treatment for almost 5 years in patients with RA.MethodsPatients who completed the 24-week Rheumatoid Arthritis Prevention of Structural Damage (RAPID) 2 randomized controlled trial (RCT; NCT00160602), or who were American College of Rheumatology (ACR) 20 non-responders at Week 16, entered the open-label extension (OLE; NCT00160641). After ≥6 months treatment with CZP 400 mg every two weeks (Q2W), dose was reduced to 200 mg Q2W, the approved maintenance dose. Safety data are presented from all patients who received ≥1 dose CZP (Safety population, n=612). Efficacy data are presented to Week 232 for the intent-to-treat (ITT, n=492) and Week 24 CZP RCT Completer (n=342) populations, and through 192 weeks of dose-reduction for the Dose-reduction population (patients whose CZP dose was reduced to 200 mg, n=369). Radiographic progression (modified total Sharp score change from RCT baseline >0.5) to Week 128 is reported for the Week 24 CZP Completers.ResultsIn the RCT, 619 patients were randomized to CZP+MTX (n=492) or placebo+MTX (n=127). Overall, 567 patients (91.6%) entered the OLE: 447 CZP and 120 placebo patients. Of all randomized patients, 358 (57.8%) were ongoing at Week 232. Annual drop-out rates during the first four years ranged from 8.4–15.0%. Event rates per 100 patient-years were 163.0 for adverse events (AEs) and 15.7 for serious AEs. Nineteen patients (3.1%) had fatal AEs (incidence rate=0.8). Clinical improvements in the RCT were maintained to Week 232 in the CZP Completers: mean Disease Activity Score 28 (Erythrocyte Sedimentation Rate) change from baseline was −3.4 and ACR20/50/70 responses 68.4%/47.1%/25.1% (non-responder imputation). Similar improvements observed in the ITT were maintained following dose-reduction. 73.2% of CZP Completers had no radiographic progression at Week 128.ConclusionsIn patients with active RA despite MTX therapy, CZP was well tolerated, with no new safety signals identified. CZP provided sustained improvements in clinical outcomes for almost 5 years.

Trial registration

ClinicalTrials.gov, NCT00160602 and NCT00160641. Registered 8 September 2005.

Electronic supplementary material

The online version of this article (doi:10.1186/s13075-015-0767-2) contains supplementary material, which is available to authorized users.  相似文献   
976.
IntroductionThis open-label pilot study aimed to investigate the efficacy of canakinumab in colchicine-resistant familial Mediterranean fever (FMF) patients.MethodPatients with one or more attacks in a month in the preceding 3 months despite colchicine were eligible to enter a 30-day run-in period. Patients who had an attack during the first run-in period advanced to a second 30-day period. At the first attack, patients started to receive three canakinumab 150 mg subcutaneous injections at 4-week intervals, and were then followed for an additional 2 months. Primary efficacy outcome measure was the proportion of patients with 50 % or more reduction in attack frequency. Secondary outcome measures included time to next attack following last canakinumab dose and changes in quality of life assessed by SF-36.ResultsThirteen patients were enrolled in the run-in period and 9 advanced to the treatment period. All 9 patients achieved a 50 % or more reduction in attack frequency, and only one patient had an attack during the treatment period. C-reactive protein and serum amyloid A protein levels remained low throughout the treatment period. Significant improvement was observed in both physical and mental component scores of the Short Form-36 at Day 8. Five patients had an attack during the 2-month follow-up, occurring median 71 (range, 31 to 78) days after the last dose. Adverse events were similar to those observed in the previous canakinumab trials.ConclusionCanakinumab was effective at controlling the attack recurrence in patients with FMF resistant to colchicine. Further investigations are warranted to explore canakinumab’s potential in the treatment of patients with colchicine resistant FMF.

Trial registration

ClinicalTrials.gov NCT01088880. Registered 16 March 2010.

Electronic supplementary material

The online version of this article (doi:10.1186/s13075-015-0765-4) contains supplementary material, which is available to authorized users.  相似文献   
977.
Specification of digit number and identity is central to digit pattern in vertebrate limbs. The classical talpid(3) chicken mutant has many unpatterned digits together with defects in other regions, depending on hedgehog (Hh) signalling, and exhibits embryonic lethality. The talpid(3) chicken has a mutation in KIAA0586, which encodes a centrosomal protein required for the formation of primary cilia, which are sites of vertebrate Hh signalling. The highly conserved exons 11 and 12 of KIAA0586 are essential to rescue cilia in talpid(3) chicken mutants. We constitutively deleted these two exons to make a talpid3(-/-) mouse. Mutant mouse embryos lack primary cilia and, like talpid(3) chicken embryos, have face and neural tube defects but also defects in left/right asymmetry. Conditional deletion in mouse limb mesenchyme results in polydactyly and in brachydactyly and a failure of subperisoteal bone formation, defects that are attributable to abnormal sonic hedgehog and Indian hedgehog signalling, respectively. Like talpid(3) chicken limbs, the mutant mouse limbs are syndactylous with uneven digit spacing as reflected in altered Raldh2 expression, which is normally associated with interdigital mesenchyme. Both mouse and chicken mutant limb buds are broad and short. talpid3(-/-) mouse cells migrate more slowly than wild-type mouse cells, a change in cell behaviour that possibly contributes to altered limb bud morphogenesis. This genetic mouse model will facilitate further conditional approaches, epistatic experiments and open up investigation into the function of the novel talpid3 gene using the many resources available for mice.  相似文献   
978.
Diets given for 30 days with various mono-(MUFA) and poly-(PUFA) unsaturated fatty acid contents were evaluated for brain protection in magnesium-deficient mice: a commercial and three synthetic diets (n-6PUFA, n-3PUFA and MUFA-based chows enriched with 5% corn/sunflower oils 1:3, with 5% rapeseed oil and with 5% high oleic acid sunflower oil/sunflower oil 7:3, respectively). Unlike magnesium deprivation, they induced significant differences in brain and erythrocyte membrane phospholipid fatty acid compositions. n-3PUFA but not other diets protected magnesium-deficient mice against hyperactivity and moderately towards maximal electroshock- and NMDA-induced seizures. This diet also inhibited audiogenic seizures by 50%, preventing animal deaths. Because, like n-6PUFA diet, matched control MUFA diet failed to induce brain protections, alpha-linolenate (ALA) rather than reduced n-6 PUFA diet content is concluded to cause n-3PUFA neuroprotection. Present in vivo data also corroborate literature in vitro inhibition of T type calcium channels by n-3 PUFA, adding basis to ALA supplementation in human anti-epileptic/neuroprotective strategies.  相似文献   
979.
980.
Several nanoparticle platforms are currently being developed for applications in medicine, including both synthetic materials and naturally occurring bionanomaterials such as viral nanoparticles (VNPs) and their genome-free counterparts, virus-like particles (VLPs). A broad range of genetic and chemical engineering methods have been established that allow VNP/VLP formulations to carry large payloads of imaging reagents or drugs. Furthermore, targeted VNPs and VLPs can be generated by including peptide ligands on the particle surface. In this article, we highlight state-of-the-art virus engineering principles and discuss recent advances that bring potential biomedical applications a step closer. Viral nanotechnology has now come of age and it will not be long before these formulations assume a prominent role in the clinic.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号