首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   258篇
  免费   44篇
  国内免费   3篇
  305篇
  2023年   1篇
  2022年   2篇
  2021年   4篇
  2020年   3篇
  2019年   4篇
  2018年   6篇
  2017年   10篇
  2016年   12篇
  2015年   8篇
  2014年   8篇
  2013年   14篇
  2012年   15篇
  2011年   15篇
  2010年   16篇
  2009年   15篇
  2008年   11篇
  2007年   23篇
  2006年   11篇
  2005年   11篇
  2004年   8篇
  2003年   9篇
  2002年   4篇
  2001年   10篇
  2000年   6篇
  1999年   3篇
  1998年   11篇
  1997年   7篇
  1996年   5篇
  1995年   2篇
  1994年   3篇
  1993年   8篇
  1992年   3篇
  1991年   5篇
  1990年   2篇
  1989年   1篇
  1988年   2篇
  1987年   2篇
  1986年   2篇
  1985年   1篇
  1984年   2篇
  1983年   2篇
  1982年   4篇
  1981年   2篇
  1979年   3篇
  1978年   2篇
  1977年   1篇
  1975年   2篇
  1970年   1篇
  1969年   1篇
  1932年   1篇
排序方式: 共有305条查询结果,搜索用时 15 毫秒
61.
The present study of the Orchidaceae family was carried out in Guamuahaya’s mountain range, from 2000 to March 2013. Fifteen districts were explored after 33 expeditions in the Province of Cienfuegos. Ninety two plant species were identified in the studied area, taking into account the ecological parameters of the mountainous areas of Cienfuegos and Cumanayagua municipalities.  相似文献   
62.
63.

Background

The photorespiratory nitrogen cycle in C3 plants involves an extensive diversion of carbon and nitrogen away from the direct pathways of assimilation. The liberated ammonia is re-assimilated, but up to 25% of the carbon may be released into the atmosphere as CO2. Because of the loss of CO2 and high energy costs, there has been considerable interest in attempts to decrease the flux through the cycle in C3 plants. Transgenic tobacco plants were generated that contained the genes gcl and hyi from E. coli encoding glyoxylate carboligase (EC 4.1.1.47) and hydroxypyruvate isomerase (EC 5.3.1.22) respectively, targeted to the peroxisomes. It was presumed that the two enzymes could work together and compete with the aminotransferases that convert glyoxylate to glycine, thus avoiding ammonia production in the photorespiratory nitrogen cycle.

Results

When grown in ambient air, but not in elevated CO2, the transgenic tobacco lines had a distinctive phenotype of necrotic lesions on the leaves. Three of the six lines chosen for a detailed study contained single copies of the gcl gene, two contained single copies of both the gcl and hyi genes and one line contained multiple copies of both gcl and hyi genes. The gcl protein was detected in the five transgenic lines containing single copies of the gcl gene but hyi protein was not detected in any of the transgenic lines. The content of soluble amino acids including glycine and serine, was generally increased in the transgenic lines growing in air, when compared to the wild type. The content of soluble sugars, glucose, fructose and sucrose in the shoot was decreased in transgenic lines growing in air, consistent with decreased carbon assimilation.

Conclusions

Tobacco plants have been generated that produce bacterial glyoxylate carboligase but not hydroxypyruvate isomerase. The transgenic plants exhibit a stress response when exposed to air, suggesting that some glyoxylate is diverted away from conversion to glycine in a deleterious short-circuit of the photorespiratory nitrogen cycle. This diversion in metabolism gave rise to increased concentrations of amino acids, in particular glutamine and asparagine in the leaves and a decrease of soluble sugars.  相似文献   
64.
Stoats are significant predators of native fauna in New Zealand. They occur in many habitat types and consume a wide range of prey. The diet of stoats in the Tasman River, South Canterbury, was studied by analysis of scats and den contents. Analysis of 206 scats showed that stoats ate mainly lagomorphs, birds and invertebrates. Minor components included mice, lizards, fish and hedgehogs. Stoats ate more birds in spring than in autumn, and female stoats ate more invertebrates than did males. The contents of 219 dens collected in the same area at the same time provided further information. Birds and lagomorphs occurred at high frequency in dens, and other components were minor. Remains in dens were larger than in scats and allowed identification of many more prey items to species level. Den contents revealed a potentially substantial impact of stoats on threatened shorebirds locally; this impact was not detected by analysis of scats.  相似文献   
65.
We used the repetitive character of transposable elements to isolate a non-LTR retrotransposon in Drosophila subobscura. bilbo, as we have called it, has homology to TRIM and LOA elements. Sequence analysis showed a 5' untranslated region (UTR), an open reading frame (ORF) with no RNA-binding domains, a downstream ORF that had structural homology to that of the I factor, and, finally, a 3' UTR which ended in several 5-nt repeats. The results of our phylogenetic and structural analyses shed light on the evolution of Drosophila non-LTR retrotransposons and support the hypothesis that an ancestor of these elements was structurally complex.   相似文献   
66.
The ability of membrane preparations from different tissues to catalyse the phosphorylation of their endogenous protein (intrinsic protein kinase activity) was determined. It was found that membrane fragments prepared from a large variety of tissues contain this activity although the actual level varies quite widely. Preparations from vas deferens and brain have nearly ten times more activity than preparations from heart, kidney, or erythrocytes. Plasma membranes from skeletal muscle have no detectable activity. The intrinsic protein kinase activity of membrane fragments from most tissues is stimulated by cyclic AMP although the phosphorylation of proteins in preparations of kidney microsomes or heart plasma membranes, is not affected. cyclic GMP (10 micronM) has no effect on the intrinsic protein kinase activity of any membrane preparation examined. A specific inhibitor of soluble, cyclic AMP-stimulated, protein kinase has no effect on the intrinsic protein kinase activity of any of the membrane preparations examined. This suggests that the intrinsic protein kinase activity of membrane preparations may be due to the presence of a specific protein kinase. It is suggested that an examination of the distribution of membrane-bound intrinsic protein kinase activity among different tissues may be helpful in determining the function of the reaction.  相似文献   
67.
Alternative splicing of fibroblast growth factor receptor-2 (FGFR2) mutually exclusive exons IIIb and IIIc results in highly cell-type-specific expression of functionally distinct receptors, FGFR2-IIIb and FGFR2-IIIc. We previously identified an RNA cis-element, ISE/ISS-3, that enhanced exon IIIb splicing and silenced exon IIIc splicing. Here, we have performed comprehensive mutational analysis to define critical sequence motifs within this element that independently either enhance splicing of upstream exons or repress splicing of downstream exons. Such analysis included use of a novel fluorescence-based splicing reporter assay that allowed quantitative determination of relative functional activity of ISE/ISS-3 mutants using flow cytometric analysis of live cells. We determined that specific sequences within this element that mediate splicing enhancement also mediate splicing repression, depending on their position relative to a regulated exon. Thus, factors that bind the element are likely to be coordinately involved in mediating both aspects of splicing regulation. Exon IIIc silencing is dependent upon a suboptimal branchpoint sequence containing a guanine branchpoint nucleotide. Previous studies of exon IIIc splicing in HeLa nuclear extracts demonstrated that this guanine branchsite primarily impaired the second step of splicing suggesting that ISE/ISS-3 may block exon IIIc inclusion at this step. However, results presented here that include use of newly developed in vitro splicing assays of FGFR2 using extracts from a cell line expressing FGFR2-IIIb strongly suggest that cell-type-specific silencing of exon IIIc occurs at or prior to the first step of splicing.  相似文献   
68.
Dosage compensation in eutherian mammals occurs by inactivation of one X chromosome in females. Silencing of that X chromosome is initiated by Xist, a large non-coding RNA, whose coating of the chromosome extends in cis from the X inactivation center. LINE-1 (L1) retrotransposons have been implicated as possible players for propagation of the Xist signal, but it has remained unclear whether they are essential components. We previously identified a group of South American rodents in which L1 retrotransposition ceased over 8 million years ago and have now determined that at least one species of these rodents, Oryzomys palustris, still retains X inactivation. We have also isolated and analyzed the majority of the Xist RNA from O. palustris and a sister species retaining L1 activity, Sigmodon hispidus, to determine if evolution in these sequences has left signatures that might suggest a critical role for L1 elements in Xist function. Comparison of rates of Xist evolution in the two species fails to support L1 involvement, although other explanations are possible. Similarly, comparison of known repeats and potential RNA secondary structures reveals no major differences with the exception of a new repeat in O. palustris that has potential to form new secondary structures.  相似文献   
69.
The ability of American carnivorous pitcher plants (Sarracenia) to digest insect prey is facilitated by microbial associations. Knowledge of the details surrounding this interaction has been limited by our capability to characterize bacterial diversity in this system. To describe microbial diversity within and between pitchers of one species, Sarracenia alata, and to explore how these communities change over time as pitchers accumulate and digest insect prey, we collected and analyzed environmental sequence tag (454 pyrosequencing) and genomic fingerprint (automated ribosomal intergenic spacer analysis and terminal restriction fragment length polymorphism) data. Microbial richness associated with pitcher plant fluid is high; more than 1,000 unique phylogroups were identified across at least seven phyla and 50 families. We documented an increase in bacterial diversity and abundance with time and observed repeated changes in bacterial community composition. Pitchers from different plants harbored significantly more similar bacterial communities at a given time point than communities coming from the same genetic host over time. The microbial communities in pitcher plant fluid also differ significantly from those present in the surrounding soil. These findings indicate that the bacteria associated with pitcher plant leaves are far from random assemblages and represent an important step toward understanding this unique plant-microbe interaction.Characterization of the phyllosphere is fundamental to our understanding of the ecology and evolution of plant populations and plant diversity and their interactions with other organisms (46, 64, 66). The carnivorous pitcher plant genus Sarracenia is an obvious system to address basic questions in plant-microbe interaction because each pitcher (a modified leaf) of the plant contains a microcosm composed of larval insects, fungi, algae, rotifers, nematodes, and bacteria that, together, ultimately break down nutrients from insect prey for the plant (1, 10, 20, 28, 37). Each pitcher represents a naturally defined and discrete community with a finite volume and a discrete life span (each leaf lasts only one season). Several investigations have explored species interactions within Sarracenia pitchers (13, 20, 34, 54), and competition, predation and dispersal frequency appear to be important drivers of community composition in the system (1, 20, 43, 44). Studies involving community patterns on a larger scale within pitchers, however, are few, and the processes that produce these patterns remain unknown (33).  相似文献   
70.
Despite the widespread use and obvious strengths of model-based methods for phylogeographic study, a persistent concern for such analyses is related to the definition of the model itself. The study by Peter et al. (2010) in this issue of Molecular Ecology demonstrates an approach for overcoming such hurdles. The authors were motivated by a deceptively simple goal; they sought to infer whether a population has remained at a low and stable size or has undergone a decline, and certainly there is no shortage of software packages for such a task (e.g., see list of programs in Excoffier & Heckel 2006). However, each of these software packages makes basic assumptions about the underling population (e.g., is the population subdivided or panmictic); these assumptions are explicit to any model-based approach but can bias parameter estimates and produce misleading inferences if the model does not approximate the actual demographic history in a reasonable manner. Rather than guessing which model might be best for analyzing the data (microsatellite data from samples of chimpanzees), Peter et al. (2010) quantify the relative fit of competing models for estimating the population genetic parameters of interest. Complemented by a revealing simulation study, the authors highlight the peril inherent to model-based inferences that lack a statistical evaluation of the fit of a model to the data, while also demonstrating an approach for model selection with broad applicability to phylogeographic analysis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号