首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3458篇
  免费   327篇
  2022年   29篇
  2021年   61篇
  2020年   28篇
  2019年   42篇
  2018年   72篇
  2017年   61篇
  2016年   98篇
  2015年   132篇
  2014年   170篇
  2013年   195篇
  2012年   291篇
  2011年   267篇
  2010年   161篇
  2009年   155篇
  2008年   211篇
  2007年   191篇
  2006年   196篇
  2005年   188篇
  2004年   166篇
  2003年   172篇
  2002年   137篇
  2001年   53篇
  2000年   44篇
  1999年   47篇
  1998年   29篇
  1997年   29篇
  1996年   19篇
  1995年   12篇
  1994年   15篇
  1993年   21篇
  1992年   19篇
  1991年   21篇
  1990年   22篇
  1989年   18篇
  1988年   18篇
  1987年   31篇
  1986年   16篇
  1984年   16篇
  1982年   14篇
  1980年   15篇
  1979年   21篇
  1978年   14篇
  1977年   12篇
  1974年   13篇
  1973年   14篇
  1972年   12篇
  1971年   17篇
  1970年   15篇
  1969年   15篇
  1967年   15篇
排序方式: 共有3785条查询结果,搜索用时 93 毫秒
21.
The ADP/ATP translocator was selectively labeled with the triplet probe eosin-5-maleimide (EMA) after pretreatment with N-ethylmaleimide in beef heart mitochondria, as reported previously for submitochondrial particles (Müller, M., Krebs, J. J. R., Cherry, R. J., and Kawato, S. (1982) J. Biol. Chem. 257, 1117-1120). The EMA binding was completely inhibited by carboxyatractylate. 0.7-1.1 molecules of EMA conjugated with 1 molecule of the dimeric translocator with Mr approximately 65,000. The EMA binding decreased [14C]ADP uptake by about approximately 25%. The EMA-labeled translocator bongkrekate complex was purified and reconstituted in liposomes by removing Triton X-100 with Amberlite XAD-2. The liposomes were composed of phosphatidylcholine/phosphatidylethanolamine/cardiolipin and the lipid to protein ratio by weight was (L/P) = 60. Rotational diffusion of the ADP/ATP translocator around the membrane normal was measured in reconstituted proteoliposomes and in the mitochondrial inner membranes by observing the flash-induced absorption anisotropy, r(t), of EMA. In proteoliposomes with L/P = 60, the translocator was rotating with an approximate average rotational relaxation time of phi congruent to 246 microseconds and a normalized time-independent anisotrophy [r3/rr(0)]min congruent to 0.55. In intact mitochondria, values of phi congruent to 405 microseconds and r3/rr(0) congruent to 0.79 were obtained. The higher value of r3/rr(0) in mitochondria compared with proteoliposomes indicates the co-existence of rotating and immobile translocator (phi greater than 20 ms) in the inner mitochondrial membrane. Based on the assumption that all the translocator is rotating in the lipid-rich proteoliposomes, the population of the mobile translocator at 20 degrees C was calculated to be approximately 47%. By removing the outer membrane, the mobile population was increased to approximately 70% in mitoplasts, while approximately 53% of the translocator was rotating in submitochondrial particles. The above results indicate a significant difference in protein-protein interactions of the ADP/ATP translocator in the different types of inner membranes of mitochondria. The immobile population of the translocator could be due to nonspecific protein aggregates caused by the very high concentration of proteins in the inner membrane of mitochondria (L/P approximately 0.4).  相似文献   
22.
The 24-hr patterns of plasma thyrotropin have been observed in 12 endogenous depressed patients in both depressed and recovered states and in 13 normal subjects. A clear circadian rhythm was detected in controls with high values at night. In depression, the circadian rhythm was altered with amplitude reduction and blunted nocturnal secretion, abnormalities particularly relevant in bipolar patients. This flattened profile could be linked to the blunted response of TSH to TRH administration reported in depressed patients. Normal nyctohemeral patterns have been restored after recovery. These chronobiological abnormalities as well as their normalization under antidepressant drugs seem to be similar to those reported for various parameters (e.g. temperature, Cortisol, etc) in depression which could support the chronobiological hypothesis for affective disorders.  相似文献   
23.
Ehrlich ascites cells were preincubated in hypotonic medium with subsequent restoration of tonicity. After the initial osmotic shrinkage the cells recovered their volume within 5 min with an associated KCl uptake. The volume recovery was inhibited when NO-3 was substituted for Cl-, and when Na+ was replaced by K+, or by choline (at 5 mM external K+). The volume recovery was strongly inhibited by furosemide and bumetanide, but essentially unaffected by DIDS. The net uptake of Cl- was much larger than the value predicted from the conductive Cl- permeability. The undirectional 36Cl flux, which was insensitive to bumetanide under steady-state conditions, was substantially increased during regulatory volume increase, and showed a large bumetanide-sensitive component. During volume recovery the Cl- flux ratio (influx/efflux) for the bumetanide-sensitive component was estimated at 1.85, compatible with a coupled uptake of Na+ and Cl-, or with an uptake via a K+,Na+,2Cl- cotransport system. The latter possibility is unlikely, however, because a net uptake of KCl was found even at low external K+, and because no K+ uptake was found in ouabain-poisoned cells. In the presence of ouabain a bumetanide-sensitive uptake during volume recovery of Na+ and Cl- in nearly equimolar amounts was demonstrated. It is proposed that the primary process during the regulatory volume increase is an activation of an otherwise quiescent, bumetanide-sensitive Na+,Cl- cotransport system with subsequent replacement of Na+ by K+ via the Na+/K+ pump, stimulated by the Na+ influx through the Na+,Cl- cotransport system.  相似文献   
24.
ON CLUTCH-SIZE AND FITNESS   总被引:12,自引:0,他引:12  
Eric L.  Charnov John R.  Krebs 《Ibis》1974,116(2):217-219
  相似文献   
25.
26.
Regulation of the pentose phosphate cycle   总被引:25,自引:12,他引:13       下载免费PDF全文
1. A search was made for mechanisms which may exert a ;fine' control of the glucose 6-phosphate dehydrogenase reaction in rat liver, the rate-limiting step of the oxidative pentose phosphate cycle. 2. The glucose 6-phosphate dehydrogenase reaction is expected to go virtually to completion because the primary product (6-phosphogluconate lactone) is rapidly hydrolysed and the equilibrium of the joint dehydrogenase and lactonase reactions is in favour of virtually complete formation of phosphogluconate. However, the reaction does not go to completion, because glucose 6-phosphate dehydrogenase is inhibited by NADPH (Neglein & Haas, 1935). 3. Measurements of the inhibition (which is competitive with NADP(+)) show that at physiological concentrations of free NADP(+) and free NADPH the enzyme is almost completely inhibited. This indicates that the regulation of the enzyme activity is a matter of de-inhibition. 4. Among over 100 cell constituents tested only GSSG and AMP counteracted the inhibition by NADPH; only GSSG was highly effective at concentrations that may be taken to occur physiologically. 5. The effect of GSSG was not due to the GSSG reductase activity of liver extracts, because under the test conditions the activity of this enzyme was very weak, and complete inhibition of the reductase by Zn(2+) did not abolish the GSSG effect. 6. Preincubation of the enzyme preparation with GSSG in the presence of Mg(2+) and NADP(+) before the addition of glucose 6-phosphate and NADPH much increased the GSSG effect. 7. Dialysis of liver extracts and purification of glucose 6-phosphate dehydrogenase abolished the GSSG effect, indicating the participation of a cofactor in the action of GSSG. 8. The cofactor removed by dialysis or purification is very unstable. The cofactor could be separated from glucose 6-phosphate dehydrogenase by ultrafiltration of liver homogenates. Some properties of the cofactor are described. 9. The hypothesis that GSSG exerts a fine control of the pentose phosphate cycle by counteracting the NADPH inhibition of glucose 6-phosphate dehydrogenase is discussed.  相似文献   
27.
The binding of calcium by isolated sarcoplasmic reticulum from cow uterus was studied. Sarcoplasmic reticulum was prepared by differential centrifugation. Three fractions were obtained: I, sedimented between 2,500–15,000 x g; II at 40,000 x g; and III, at 150,000 x g. Fraction II was further purified on a sucrose density gradient. All three fractions contained considerable amounts of intrinsic calcium, mostly in fraction I. Calcium binding in the presence of ATP1 and Mg also was greatest in fraction I, followed by fraction II, with less in fraction III. Without ATP no calcium was taken up. 5 and 10 mM sodium azide partially inhibited calcium binding in fraction I, but not in fraction II, suggesting the presence of some mitochondria or mitochondrial fragments in fraction I. Calcium binding in fraction II was completely inhibited by 3 mM salyrgan; this fraction thus appears to be sarcoplasmic reticulum. ATPase activity was found in all three fractions, highest in fraction II. It is computed that calcium binding in fractions I and II, on the basis of a 50% yield of protein, is sufficient to elicit contraction by supplying calcium to the contractile proteins of the smooth muscle cell and to regulate relaxation and contraction.  相似文献   
28.
1. The regulatory effects that adenine nucleotides are known to exert on enzymes of glycolysis and gluconeogenesis were demonstrated to operate in kidney-cortex slices and in the isolated perfused rat kidney by the addition of exogenous ATP, ADP and AMP to the incubation or perfusion media. 2. Both preparations rapidly converted added ATP into ADP and AMP, and ADP into AMP; added AMP was rapidly dephosphorylated. AMP formed from ATP was dephosphorylated at a lower rate than was added AMP, especially when the initial ATP concentration was high (10mm). Deamination of added AMP occurred more slowly than dephosphorylation of AMP. 3. Gluconeogenesis from lactate or propionate by rat kidney-cortex slices, and from lactate by the isolated perfused rat kidney, was inhibited by the addition of adenine nucleotides to the incubation or perfusion media. In contrast, oxygen consumption and the utilization of propionate or lactate by slices were not significantly affected by added ATP or AMP. 4. The extent and rapidity of onset of the inhibition of renal gluconeogenesis were proportional to the AMP concentration in the medium and the tissue, and were not due to the production of acid or P(i) or the formation of complexes with Mg(2+) ions. 5. Glucose uptake by kidney-cortex slices was stimulated 30-50% by added ATP, but the extra glucose removed was not oxidized to carbon dioxide and did not all appear as lactate. Glucose uptake, but not lactate production, by the isolated perfused kidney was also stimulated by the addition of ATP or AMP. 6. In the presence of either glucose or lactate, ATP and AMP greatly increased the concentrations of C(3) phosphorylated intermediates and fructose 1,6-diphosphate in the kidney. There was a simultaneous rise in the concentration of malate and fall in the concentration of alpha-oxoglutarate. 7. The effects of added adenine nucleotides on renal carbohydrate metabolism seem to be mainly due to an increased concentration of intracellular AMP, which inhibits fructose diphosphatase and deinhibits phosphofructokinase. This conclusion is supported by the accumulation of intermediates of the glycolytic pathway between fructose diphosphate and pyruvate. 8. ATP or ADP (10mm) added to the medium perfusing an isolated rat kidney temporarily increased the renal vascular resistance, greatly diminishing the flow rate of perfusion medium for a period of several minutes.  相似文献   
29.
1. Glycerol and dihydroxyacetone, both antiketogenic and readily metabolized, but differing in their effects on the redox state of the hepatic NAD couples, were given to starved rats and the contents of metabolites were measured in freezeclamped liver and in the blood. The object was to study the effects of changes in the redox state and of the availability of oxidizable substrates on the rate of ketone-body formation. 2. Intramuscular administration of dihydroxyacetone, glycerol or glucose to starved rats decreased the concentrations of acetoacetate and 3-hydroxybutyrate in the blood by 70-80% within 60min., whereas there was no major change in the free fatty acid concentration. 3. Dihydroxyacetone, but not glucose or glycerol, caused an immediate and sustained twofold increase in the blood lactate concentration. 4. Dihydroxyacetone and glycerol caused a rapid fall in the hepatic concentrations of ketone bodies, dihydroxyacetone being more effective. 5. This decrease was not accompanied by significant changes in the concentrations of acetyl-CoA, long-chain acyl-CoA or free CoA. 6. The hepatic glycerophosphate concentration rose about 40-fold on administration of glycerol, whereas with dihydroxyacetone the increase was only about 50%. The large increase in glycerophosphate concentration after administration of glycerol was completely prevented by pretreatment of the rats with tri-iodothyronine. Triiodothyronine-treated rats showed the same decrease in ketone-body concentrations after administration of glycerol as the untreated rats. 7. Glycerol and dihydroxyacetone caused an increase in the hepatic lactate concentration; the pyruvate concentration rose only after injection of dihydroxyacetone. 8. Both compounds increased liver glycogen. 9. Calculation of the [free NAD(+)]/[free NADH] ratios indicated that dihydroxyacetone increased the ratio in cytoplasm and mitochondria, whereas glycerol caused a prompt fall in both compartments, followed at 10min. by a slight rise in the mitochondrial compartment. 10. Dihydroxyacetone did not alter the hepatic content of ATP. 11. The findings suggest that the main reason for the antiketogenic effect of glycerol and dihydroxyacetone was a consequence of their ready metabolism and the provision of an increased supply of C(3) intermediates for conversion into oxaloacetate. Under the test conditions, neither the hepatic content of alpha-glycerophosphate nor the redox state of the NAD couples appeared to play a major role in the regulation of ketogenesis.  相似文献   
30.
1. The activities of hydroxymethylglutaryl-CoA synthase and lyase in rat liver were found to be two- to 15-fold greater than those reported by other authors under similar conditions. 2. When expressed on the basis of body weight, no appreciable differences were found between the activities of hydroxymethylglutaryl-CoA synthase in whole homogenates of livers from normal and starved rats. The synthase activity increased by 70% and 140% in livers of alloxan-diabetic rats and rats fed on a high-fat diet respectively. 3. Hydroxymethylglutaryl-CoA lyase activity showed no significant increases in starvation or alloxan-diabetes, but a 40% increase was found in fat-fed rats. 4. Less than 12% of the activities of both enzymes were found in the cytoplasmic fraction of normal liver. The cytoplasmic activity doubled in alloxan-diabetes and starvation; on feeding with a high-fat diet the increase, though significant, was less marked. 6. The intracellular distribution of glutamate dehydrogenase indicated that the changes in the cytoplasmic activities observed were not due to leakage from the mitochondria. 7. Feeding with a normal or high-fat diet after 48hr. starvation caused within 24hr. a decrease in the cytoplasmic activity of hydroxymethylglutaryl-CoA synthase to values lower than those found in rats fed on a corresponding diet for a longer period of time. 8. Acetoacetyl-CoA deacylase activity in liver was about 20% of that of hydroxymethylglutaryl-CoA synthase and was primarily located in the cytoplasm. Starvation or alloxan-diabetes did not alter the acetoacetyl-CoA deacylase activity. 9. It is concluded that variations in the concentrations of enzymes involved in acetoacetate synthesis play no major role in the regulation of ketone-body formation in starvation and alloxan-diabetes. The changes in the cytoplasmic activities of hydroxymethylglutaryl-CoA synthase and lyase suggest that acetoacetate synthesis can occur in the cytoplasm. This may play a role in the disposal of surplus acetyl-CoA arising in the cytoplasm when lipogenesis is inhibited.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号