全文获取类型
收费全文 | 320篇 |
免费 | 21篇 |
专业分类
341篇 |
出版年
2021年 | 3篇 |
2018年 | 5篇 |
2017年 | 2篇 |
2016年 | 3篇 |
2015年 | 13篇 |
2014年 | 4篇 |
2013年 | 19篇 |
2012年 | 10篇 |
2011年 | 14篇 |
2010年 | 13篇 |
2009年 | 7篇 |
2008年 | 14篇 |
2007年 | 16篇 |
2006年 | 11篇 |
2005年 | 7篇 |
2004年 | 9篇 |
2003年 | 8篇 |
2002年 | 11篇 |
2001年 | 6篇 |
2000年 | 7篇 |
1999年 | 11篇 |
1998年 | 11篇 |
1997年 | 4篇 |
1995年 | 2篇 |
1994年 | 4篇 |
1993年 | 4篇 |
1992年 | 3篇 |
1991年 | 7篇 |
1990年 | 3篇 |
1989年 | 6篇 |
1988年 | 2篇 |
1987年 | 4篇 |
1986年 | 4篇 |
1985年 | 9篇 |
1984年 | 6篇 |
1983年 | 3篇 |
1982年 | 5篇 |
1981年 | 2篇 |
1979年 | 2篇 |
1978年 | 3篇 |
1976年 | 3篇 |
1975年 | 6篇 |
1972年 | 2篇 |
1968年 | 4篇 |
1967年 | 4篇 |
1966年 | 4篇 |
1962年 | 2篇 |
1961年 | 6篇 |
1959年 | 2篇 |
1911年 | 2篇 |
排序方式: 共有341条查询结果,搜索用时 9 毫秒
61.
Kogelberg H Lawson AM Muskett FW Carruthers RA Feizi T 《Protein expression and purification》2000,20(1):10-20
NKR-P1A is a homodimeric type II transmembrane protein of the C-type lectin family found on natural killer (NK) cells and NK-like T cells and is an activator of cytotoxicity. Toward structure determination by NMR, the recombinant carbohydrate-recognition domain (CRD) of NKR-P1A has been expressed in high-yield in Escherichia coli and folded in vitro. The purified protein behaves as a monomer in size-exclusion chromatography and is bound by the conformation-sensitive antibody, 3.2.3, indicating a folded structure. A polypeptide tag at the N-terminus is selectively cleaved from the CRD after limited trypsin digestion in further support of a compact folded structure. The disulfide bonds have been identified by peptide mapping and electrospray mass spectrometry. These are characteristic of a long form CRD. The 1D NMR spectrum of the unlabeled CRD and the 2D HSQC spectrum of the (15)N-labeled CRD are those of a folded protein. Chemical shifts of H(alpha) and NH protons indicate a considerable amount of beta-strand structure. Successful folding in the absence of Ca(2+), coupled with the lack of chemical shift changes upon addition of Ca(2+), suggests that the NKR-P1A-CRD may not be a Ca(2+)-binding protein. 相似文献
62.
63.
Julie K. De Zutter Kara B. Levine Di Deng Anthony Carruthers 《The Journal of biological chemistry》2013,288(28):20734-20744
The human blood-brain barrier glucose transport protein (GLUT1) forms homodimers and homotetramers in detergent micelles and in cell membranes, where the GLUT1 oligomeric state determines GLUT1 transport behavior. GLUT1 and the neuronal glucose transporter GLUT3 do not form heterocomplexes in human embryonic kidney 293 (HEK293) cells as judged by co-immunoprecipitation assays. Using homology-scanning mutagenesis in which GLUT1 domains are substituted with equivalent GLUT3 domains and vice versa, we show that GLUT1 transmembrane helix 9 (TM9) is necessary for optimal association of GLUT1-GLUT3 chimeras with parental GLUT1 in HEK cells. GLUT1 TMs 2, 5, 8, and 11 also contribute to a less abundant heterocomplex. Cell surface GLUT1 and GLUT3 containing GLUT1 TM9 are 4-fold more catalytically active than GLUT3 and GLUT1 containing GLUT3 TM9. GLUT1 and GLUT3 display allosteric transport behavior. Size exclusion chromatography of detergent solubilized, purified GLUT1 resolves GLUT1/lipid/detergent micelles as 6- and 10-nm Stokes radius particles, which correspond to GLUT1 dimers and tetramers, respectively. Studies with GLUTs expressed in and solubilized from HEK cells show that HEK cell GLUT1 resolves as 6- and 10-nm Stokes radius particles, whereas GLUT3 resolves as a 6-nm particle. Substitution of GLUT3 TM9 with GLUT1 TM9 causes chimeric GLUT3 to resolve as 6- and 10-nm Stokes radius particles. Substitution of GLUT1 TM9 with GLUT3 TM9 causes chimeric GLUT1 to resolve as a mixture of 6- and 4-nm particles. We discuss these findings in the context of determinants of GLUT oligomeric structure and transport function. 相似文献
64.
A Carruthers 《Trends in biochemical sciences》1988,13(11):426-428
65.
Robert A. Jones Dennis M. Burns Daryl J. Carruthers Ifor R. Beacham 《FEMS microbiology letters》1993,114(3):299-3047
Abstract Most isolates of Salmonella contain two unrelated UDP-sugar hydrolases, one of which, encoded by the ushB gene, is inner membrane-associated. Previous studies showed that this enzyme contains a typical N-terminal signal peptide; the evidence also indicated, however, that this peptide is not cleaved, and serves to anchor the UshB protein in the inner membrane. In this report, we present strong evidence that this is indeed the case by using ushB'-'blaM fusions to demonstrate that this signal peptide is capable of localising β-lactamase to the inner membrane. We also present evidence that UshB is located on the exterior (periplasmic) side of the membrane, and hence has an 'N-terminus inside/C-terminus outside' membrane orientation, consistent with a role in the degradation of external substrates. 相似文献
66.
67.
68.
Johnson AA Kyriacou B Callahan DL Carruthers L Stangoulis J Lombi E Tester M 《PloS one》2011,6(9):e24476
Background
Rice is the primary source of food for billions of people in developing countries, yet the commonly consumed polished grain contains insufficient levels of the key micronutrients iron (Fe), zinc (Zn) and Vitamin A to meet daily dietary requirements. Experts estimate that a rice-based diet should contain 14.5 µg g−1 Fe in endosperm, the main constituent of polished grain, but breeding programs have failed to achieve even half of that value. Transgenic efforts to increase the Fe concentration of rice endosperm include expression of ferritin genes, nicotianamine synthase genes (NAS) or ferritin in conjunction with NAS genes, with results ranging from two-fold increases via single-gene approaches to six-fold increases via multi-gene approaches, yet no approach has reported 14.5 µg g−1 Fe in endosperm.Methodology/Principal Findings
Three populations of rice were generated to constitutively overexpress OsNAS1, OsNAS2 or OsNAS3, respectively. Nicotianamine, Fe and Zn concentrations were significantly increased in unpolished grain of all three of the overexpression populations, relative to controls, with the highest concentrations in the OsNAS2 and OsNAS3 overexpression populations. Selected lines from each population had at least 10 µg g−1 Fe in polished grain and two OsNAS2 overexpression lines had 14 and 19 µg g−1 Fe in polished grain, representing up to four-fold increases in Fe concentration. Two-fold increases of Zn concentration were also observed in the OsNAS2 population. Synchrotron X-ray fluorescence spectroscopy demonstrated that OsNAS2 overexpression leads to significant enrichment of Fe and Zn in phosphorus-free regions of rice endosperm.Conclusions
The OsNAS genes, particularly OsNAS2, show enormous potential for Fe and Zn biofortification of rice endosperm. The results demonstrate that rice cultivars overexpressing single rice OsNAS genes could provide a sustainable and genetically simple solution to Fe and Zn deficiency disorders affecting billions of people throughout the world. 相似文献69.
70.