首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2049篇
  免费   262篇
  2022年   16篇
  2021年   23篇
  2020年   15篇
  2019年   14篇
  2018年   20篇
  2017年   24篇
  2016年   37篇
  2015年   58篇
  2014年   55篇
  2013年   67篇
  2012年   95篇
  2011年   114篇
  2010年   55篇
  2009年   71篇
  2008年   113篇
  2007年   83篇
  2006年   88篇
  2005年   87篇
  2004年   74篇
  2003年   82篇
  2002年   74篇
  2001年   71篇
  2000年   69篇
  1999年   54篇
  1998年   34篇
  1997年   21篇
  1996年   16篇
  1995年   23篇
  1994年   28篇
  1993年   31篇
  1992年   35篇
  1991年   45篇
  1990年   34篇
  1989年   39篇
  1988年   28篇
  1987年   35篇
  1986年   30篇
  1985年   23篇
  1984年   22篇
  1983年   27篇
  1982年   22篇
  1980年   14篇
  1979年   16篇
  1975年   16篇
  1974年   13篇
  1973年   15篇
  1972年   14篇
  1970年   20篇
  1969年   12篇
  1966年   15篇
排序方式: 共有2311条查询结果,搜索用时 15 毫秒
221.
A series of pantolactam based compounds were identified as potent antagonists for the androgen receptor (AR). Those that possessed properties suitable for topical delivery were evaluated in the validated Hamster Ear Model. Several compounds were found to be efficacious in reducing wax esters, a major component of sebum, initiating further preclinical work on these compounds.  相似文献   
222.
A novel outer mitochondrial membrane protein containing [2Fe-2S] clusters, mitoNEET was first identified through its binding to the anti-diabetic drug pioglitazone. Pioglitazone belongs to a family of drugs that are peroxisome proliferator-activated receptor (PPAR) gamma agonists, collectively known as glitazones. With the lack of pharmacological tools available to fully elucidate mitoNEET's function, we developed a binding assay to probe the glitazone binding site with the aim of developing selective and high affinity compounds. We used multiple thiazolidine-2,4-dione (TZD), 2-thioxothiazolidin-4-one (TTD), and 2-iminothiazolidin-4-one (ITD) compounds to establish several trends to enhance ligand development for the purpose of elucidating mitoNEET function.  相似文献   
223.
224.
225.
226.
Carroll TJ  Das A 《Organogenesis》2011,7(3):180-190
Planar cell polarity (PCP) describes the coordinated polarization of tissue cells in a direction that is orthogonal to their apical/basal axis. In the last several years, studies in flies and vertebrates have defined evolutionarily conserved pathways that establish and maintain PCP in various cellular contexts. Defective responses to the polarizing signal(s) have deleterious effects on the development and repair of a wide variety of organs/tissues. In this review, we cover the known and hypothesized roles for PCP in the metanephric kidney. We highlight the similarities and differences in PCP establishment in this organ compared with flies, especially the role of Wnt signaling in this process. Finally, we present a model whereby the signal(s) that organizes PCP in the kidney epithelium, at least in part, comes from the adjacent stromal fibroblasts.  相似文献   
227.
Oxidative cysteine modifications have emerged as a central mechanism for dynamic post-translational regulation of all major protein classes and correlate with many disease states. Elucidating the precise roles of cysteine oxidation in physiology and pathology presents a major challenge. This article reviews the current, targeted proteomic strategies that are available to detect and quantify cysteine oxidation. A number of indirect methods have been developed to monitor changes in the redox state of cysteines, with the majority relying on the loss of reactivity with thiol-modifying reagents or restoration of labeling by reducing agents. Recent advances in chemical biology allow for the direct detection of specific cysteine oxoforms based on their distinct chemical attributes. In addition, new chemical reporters of cysteine oxidation have enabled in situ detection of labile modifications and improved proteomic analysis of redox-regulated proteins. Progress in the field of redox proteomics should advance our knowledge of regulatory mechanisms that involve oxidation of cysteine residues and lead to a better understanding of oxidative biochemistry in health and disease.  相似文献   
228.

Background

Alkhurma hemorrhagic fever virus (AHFV) and Kyasanur forest disease virus (KFDV) cause significant human disease and mortality in Saudi Arabia and India, respectively. Despite their distinct geographic ranges, AHFV and KFDV share a remarkably high sequence identity. Given its emergence decades after KFDV, AHFV has since been considered a variant of KFDV and thought to have arisen from an introduction of KFDV to Saudi Arabia from India. To gain a better understanding of the evolutionary history of AHFV and KFDV, we analyzed the full length genomes of 16 AHFV and 3 KFDV isolates.

Methodology/Principal Findings

Viral genomes were sequenced and compared to two AHFV sequences available in GenBank. Sequence analyses revealed higher genetic diversity within AHFVs isolated from ticks than human AHFV isolates. A Bayesian coalescent phylogenetic analysis demonstrated an ancient divergence of AHFV and KFDV of approximately 700 years ago.

Conclusions/Significance

The high sequence diversity within tick populations and the presence of competent tick vectors in the surrounding regions, coupled with the recent identification of AHFV in Egypt, indicate possible viral range expansion or a larger geographic range than previously thought. The divergence of AHFV from KFDV nearly 700 years ago suggests other AHFV/KFDV-like viruses might exist in the regions between Saudi Arabia and India. Given the human morbidity and mortality associated with these viruses, these results emphasize the importance of more focused study of these significant public health threats.  相似文献   
229.
"TB is too often a death sentence.?It does not have to be this way,"- Nelson Mandela. Despite the success of anti-mycobacterial drugs over the past 70 years, mycobacterial disease, particularly tuberculosis is still responsible for millions of annual deaths worldwide. Additionally, the emergence of Multidrug Resistant (MDR-TB) and Extensively Drug Resistant (XDR-TB) Tuberculosis has motivated calls by the World Health Organization (WHO) for novel drugs, vaccines and diagnostic tests. Consequently, the identification and evaluation of a range of anti-mycobacterial compounds against pathogenic mycobacterial species is of paramount importance. My colleagues and I at Cork Institute of Technology (CIT) and University College Cork (UCC) have tackled this issue through the initial optimization of the rapid, robust and inexpensive microtitre alamarBlue assay (MABA) and subsequent employment of this assay to facilitate the rapid assessment of a new wave of potential therapeutic compounds, namely bacteriocins, in particular type 1 bacteriocins known as lantibiotics. The gene encoded nature of these peptides facilitates their genetic manipulation and consequent activities as anti-microbial agents. In this regard, it may be possible to one day develop diverse populations of anti-mycobacterial bacteriocins with species specific activities. This may in turn provide more targeted therapies, resulting in less side effects, shorter treatment times and thus better patient compliance. Although current drug regimes are effective in the interim, previous lessons have taught us not to be complacent. In the words of the Intel founder Andrew Grove, 'Success breeds complacency. Complacency breeds failure. Only the paranoid survive'. Armed with knowledge of previous failures, it is the duty of the scientific community to anticipate future bacterial resistance and have an arsenal of compounds standing by in such an eventuality.  相似文献   
230.
Cowpox virus (CPXV) is described as the source of the first vaccine used to prevent the onset and spread of an infectious disease. It is one of the earliest described members of the genus Orthopoxvirus, which includes the viruses that cause smallpox and monkeypox in humans. Both the historic and current literature describe "cowpox" as a disease with a single etiologic agent. Genotypic data presented herein indicate that CPXV is not a single species, but a composite of several (up to 5) species that can infect cows, humans, and other animals. The practice of naming agents after the host in which the resultant disease manifests obfuscates the true taxonomic relationships of "cowpox" isolates. These data support the elevation of as many as four new species within the traditional "cowpox" group and suggest that both wild and modern vaccine strains of Vaccinia virus are most closely related to CPXV of continental Europe rather than the United Kingdom, the homeland of the vaccine.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号