首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   213篇
  免费   10篇
  223篇
  2023年   1篇
  2022年   1篇
  2020年   4篇
  2019年   4篇
  2018年   4篇
  2017年   1篇
  2016年   5篇
  2015年   4篇
  2014年   3篇
  2013年   2篇
  2012年   4篇
  2011年   13篇
  2010年   8篇
  2009年   3篇
  2008年   11篇
  2007年   12篇
  2006年   10篇
  2005年   8篇
  2004年   7篇
  2003年   9篇
  2002年   6篇
  2001年   7篇
  2000年   8篇
  1999年   7篇
  1998年   1篇
  1997年   2篇
  1996年   1篇
  1995年   4篇
  1994年   1篇
  1993年   1篇
  1992年   7篇
  1991年   2篇
  1990年   11篇
  1989年   5篇
  1988年   10篇
  1987年   6篇
  1986年   7篇
  1985年   7篇
  1983年   2篇
  1982年   4篇
  1981年   2篇
  1980年   1篇
  1973年   1篇
  1972年   2篇
  1971年   2篇
  1968年   1篇
  1964年   1篇
排序方式: 共有223条查询结果,搜索用时 15 毫秒
101.
Estrogen receptor (ER) ligands can modulate innate and adaptive immunity and hematopoiesis, which may explain the clear sex differences in immune responses during autoimmunity, infection or trauma. Dendritic cells (DC) are antigen presenting cells important for initiation of innate and adaptive immunity, as well as immune tolerance. DC progenitors and terminally differentiated DC express ER, indicating the ER ligands may regulate DC at multiple developmental and functional stages. Although there are profound differences in innate immunity between males and females or upon systemic imposition of sex hormones, studies are just beginning to link these differences to DC. Our and others studies demonstrate that estradiol and other ER ligands regulate the homeostasis of bone marrow myeloid and lymphoid progenitors of DC, as well as DC differentiation mediated by GM-CSF and Flt3 Ligand. Since DC have a brief lifespan, these data suggest that relatively short exposures to ER ligands in vivo will alter DC numbers and intrinsic functional capacity related to their developmental state. Studies in diverse experimental models also show that agonist and antagonist ER ligands modulate DC activation and production of inflammatory mediators. These findings have implications for human health and disease since they suggest that both DC development and functional capacity will be responsive to the physiological, pharmacological and environmental ER ligands to which an individual is exposed in vivo.  相似文献   
102.
Estrogen receptor (ER) ligands modulate hemopoiesis and immunity in the normal state, during autoimmunity, and after infection or trauma. Dendritic cells (DC) are critical for initiation of innate and adaptive immune responses. We demonstrate, using cytokine-driven culture models of DC differentiation, that 17-beta-estradiol exerts opposing effects on differentiation mediated by GM-CSF and Flt3 ligand, the two cytokines that regulate DC differentiation in vivo. We also show that estradiol acts on the same highly purified Flt3+ myeloid progenitors (MP) to differentially regulate the DC differentiation in each model. In GM-CSF-supplemented cultures initiated from MP, physiological amounts of estradiol promoted differentiation of Langerhans-like DC. Conversely, in Flt3 ligand-supplemented cultures initiated from the same MP, estradiol inhibited cell survival in a dose-dependent manner, thereby decreasing the yield of plasmacytoid and conventional myeloid and lymphoid DC. Experiments with bone marrow cells from ER-deficient mice and the ER antagonist ICI182,780 showed that estradiol acted primarily via ERalpha to regulate DC differentiation. Thus, depending on the cytokine environment, pathways of ER signaling and cytokine receptor signaling can differentially interact in the same Flt3+ MP to regulate DC development. Because the Flt3 ligand-mediated differentiation pathway is important during homeostasis, and GM-CSF-mediated pathways are increased by inflammation, our data suggest that endogenous or pharmacological ER ligands may differentially affect DC development during homeostasis and disease, with consequent effects on DC-mediated immunity.  相似文献   
103.
Mitochondria are major cellular sources of hydrogen peroxide (H(2)O(2)), the production of which is modulated by oxygen availability and the mitochondrial energy state. An increase of steady-state cell H(2)O(2) concentration is able to control the transition from proliferating to quiescent phenotypes and to signal the end of proliferation; in tumor cells thereby, low H(2)O(2) due to defective mitochondrial metabolism can contribute to sustain proliferation. Mitogen-activated protein kinases (MAPKs) orchestrate signal transduction and recent data indicate that are present in mitochondria and regulated by the redox state. On these bases, we investigated the mechanistic connection of tumor mitochondrial dysfunction, H(2)O(2) yield, and activation of MAPKs in LP07 murine tumor cells with confocal microscopy, in vivo imaging and directed mutagenesis. Two redox conditions were examined: low 1 microM H(2)O(2) increased cell proliferation in ERK1/2-dependent manner whereas high 50 microM H(2)O(2) arrested cell cycle by p38 and JNK1/2 activation. Regarding the experimental conditions as a three-compartment model (mitochondria, cytosol, and nuclei), the different responses depended on MAPKs preferential traffic to mitochondria, where a selective activation of either ERK1/2 or p38-JNK1/2 by co-localized upstream kinases (MAPKKs) facilitated their further passage to nuclei. As assessed by mass spectra, MAPKs activation and efficient binding to cognate MAPKKs resulted from oxidation of conserved ERK1/2 or p38-JNK1/2 cysteine domains to sulfinic and sulfonic acids at a definite H(2)O(2) level. Like this, high H(2)O(2) or directed mutation of redox-sensitive ERK2 Cys(214) impeded binding to MEK1/2, caused ERK2 retention in mitochondria and restricted shuttle to nuclei. It is surmised that selective cysteine oxidations adjust the electrostatic forces that participate in a particular MAPK-MAPKK interaction. Considering that tumor mitochondria are dysfunctional, their inability to increase H(2)O(2) yield should disrupt synchronized MAPK oxidations and the regulation of cell cycle leading cells to remain in a proliferating phenotype.  相似文献   
104.
105.
To preserve thermoneutrality, cold exposure is followed by changes in energy expenditure and basal metabolic rate (BMR). Because nitric oxide (NO) modulates mitochondrial O(2) uptake and energy levels, we analyzed cold effects (30 days at 4 degrees C) on rat liver and skeletal muscle mitochondrial NO synthases (mtNOS) and their putative impact on BMR. Cold exposure delimited two periods: A (days 1-10), with high systemic O(2) uptake and weight loss, and B (days 10-30), with lower O(2) uptake and fat deposition. mtNOS activity and expression decreased in period A and then increased in period B by 60-100% in liver and skeletal muscle (P < 0.05). Conversely, mitochondrial O(2) uptake remained initially high in the presence of l-arginine and later fell by 30-50% (P < 0.05). On this basis, the estimated fractional contribution of liver plus muscle to total BMR varied from 40% in period A to 25% in period B. The transitional modulation of mtNOS in rat cold acclimation could participate in adaptive responses that favor calorigenesis or conservative energy-saving mechanisms.  相似文献   
106.
Two fasciolicide preparations have been compared in 130 rats experimentally infected with Fasciola hepatica. Parasitological, immunological, and biochemical parameters have been followed to monitor the efficacy of the treatments. While Fascinex (triclabendazole) efficiently cured both male and female rats when administered as soon as 4 weeks postinfection, treatment with Ivomec-D (clorsulon + ivermectin) displayed a low efficacy on either male or female rats at this time point (54 and 0%, respectively). Moreover, when administered 8 weeks postinfection, the Ivomec-D treatment proved highly efficient on male rats while it displayed little effect on the female population (100 and 53%, respectively). This unexpected result has been related to an overexpression of a P4503A isoform that is observed only in females that have been treated with Ivomec-D. The influence of this P4503A cytochrome on drug metabolism and the need for the incorporation of both genders in clinical trials are discussed.  相似文献   
107.
108.
The histological criteria for cervical intraepithelial neoplastic lesions and their follow-ups have been established, but their reproducibility, specificity and sensibility are not certain. Immunohistochemical markers provide more information on each specific case, in order to facilitate its classification and, eventually, its prognosis. Using immunohistochemical techniques, this study analyzes the prognostic value of three markers (Ki-67, c-erbB2 and Cyclin D1) in cases of low grade squamous intraepithelial neoplasia (CIN-I), high grade squamous intraepithelial neoplasia (CIN-III), and infiltrating squamous cell carcinoma (SCC) taken from a group of cervical samples. In situ hybridization was performed in order to detect high-risk HPV. High risk HPV was demonstrated in 82%, 89% and 100% of the LGSIL, HGSIL and SCC cases, respectively. C-erbB2 expression was detected in 9%, 33% and 50% of the LSIL, HGSIL and SCC cases, respectively. The Ki-67 LI was 25%, 68% and 65.5% in the LGSIL, HGSIL and SCC cases, respectively. Nuclear Cyclin D1 expression was seen in 82%, 11% and 30% of the CIN-I,CIN-III and SCC cases, respectively. We observed that the cytoplasmic cyclin D1 expression increased with the severity of the lesion instead of the nuclear expression decreasing with the progression of the pathology. Nuclear and cytoplasmic Cyclin D1 expression seemed to be related to HPV high risk infection. We concluded that Cyclin D1, cerbB2 and The Ki-67 LI expression changed in relation to the severity of the lesion and that they could be helpful in making a differential diagnosis.  相似文献   
109.
DNA damage response signaling is crucial for genome maintenance in all organisms and is corrupted in cancer. In an RNA interference (RNAi) screen for (de)ubiquitinases and sumoylases modulating the apoptotic response of embryonic stem (ES) cells to DNA damage, we identified the E3 ubiquitin ligase/ISGylase, ariadne homologue 1 (ARIH1). Silencing ARIH1 sensitized ES and cancer cells to genotoxic compounds and ionizing radiation, irrespective of their p53 or caspase-3 status. Expression of wild-type but not ubiquitinase-defective ARIH1 constructs prevented sensitization caused by ARIH1 knockdown. ARIH1 protein abundance increased after DNA damage through attenuation of proteasomal degradation that required ATM signaling. Accumulated ARIH1 associated with 4EHP, and in turn, this competitive inhibitor of the eukaryotic translation initiation factor 4E (eIF4E) underwent increased nondegradative ubiquitination upon DNA damage. Genotoxic stress led to an enrichment of ARIH1 in perinuclear, ribosome-containing regions and triggered 4EHP association with the mRNA 5′ cap as well as mRNA translation arrest in an ARIH1-dependent manner. Finally, restoration of DNA damage-induced translation arrest in ARIH1-depleted cells by means of an eIF2 inhibitor was sufficient to reinstate resistance to genotoxic stress. These findings identify ARIH1 as a potent mediator of DNA damage-induced translation arrest that protects stem and cancer cells against genotoxic stress.  相似文献   
110.

Background

To develop the use of cultured tissue of the prelaminar optic nerve of the pig to explore possible alterations of the astrocyte-axon metabolic pathways in glaucoma, we map the distribution of the glucose transporters GLUT1 and GLUT3 in fresh and cultured tissue.

Methods

We monitor cell survival in cultures of the prelaminar optic-nerve tissue, measuring necrosis and apoptosis markers biochemically as well as morphologically, and establish the presence of the glucose transporters GLUT1 and GLUT3. We map the distribution of these transporters with immunolabeling in histological sections of the optic nerve using confocal and electronic transmission microscopy.

Results

We find that the main death type in prelaminar culture is apoptosis. Caspase 7 staining reveals an increment in apoptosis from day 1 to day 4 and a reduction from day 4 to day 8. Western blotting for GLUT1 shows stability with increased culture time. CLSM micrographs locate GLUT1 in the columnar astrocytes and in the area of axonal bundles. Anti-GLUT3 predominantly labels axonal bundles. TEM immunolabeling with colloidal gold displays a very specific distribution of GLUT-1 in the membranes of vascular endothelial cells and in periaxonal astrocyte expansions. The GLUT-3 isoform is observed with TEM only in axons in the axonal bundles.

Conclusions

Tissue culture is suitable for apoptosis-induction experiments. The results suggest that glucose is transported to the axonal cleft intracytoplasmically and delivered to the cleft by GLUT1 transporters. As monocarboxylate transporters have been reported in the prelaminar region of the optic-nerve head, this area is likely to use both lactate and glucose as energy sources.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号