首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   98篇
  免费   8篇
  106篇
  2023年   2篇
  2020年   3篇
  2019年   7篇
  2018年   1篇
  2017年   2篇
  2016年   3篇
  2015年   8篇
  2014年   7篇
  2013年   9篇
  2012年   7篇
  2011年   10篇
  2010年   3篇
  2009年   2篇
  2008年   2篇
  2007年   4篇
  2006年   1篇
  2005年   1篇
  2004年   1篇
  2003年   2篇
  2002年   1篇
  2001年   1篇
  2000年   2篇
  1999年   1篇
  1998年   4篇
  1997年   2篇
  1996年   4篇
  1995年   2篇
  1993年   2篇
  1988年   3篇
  1982年   1篇
  1980年   1篇
  1976年   1篇
  1974年   1篇
  1971年   1篇
  1966年   1篇
  1960年   2篇
  1927年   1篇
排序方式: 共有106条查询结果,搜索用时 0 毫秒
51.
52.

Background

The placenta is an important site for iron metabolism in humans. It transfers iron from the mother to the fetus. One of the major iron transport proteins is transferrin, which is a blood plasma protein crucial for iron uptake. Its localization and expression may be one of the markers to distinguish placental dysfunction.

Methods

In the experimental study we used antibody preparation, mass spectrometric analysis, biochemical and immunocytochemical methods for characterization of transferrin expression on the human choriocarcinoma cell line JAR (JAR cells), placental lysates, and cryostat sections. Newly designed monoclonal antibody TRO-tf-01 to human transferrin was applied on human placentae from normal (n = 3) and abnormal (n = 9) pregnancies.

Results

Variations of transferrin expression were detected in villous syncytiotrophoblast, which is in direct contact with maternal blood. In placentae from normal pregnancies, the expression of transferrin in the syncytium was significantly lower (p < 0.001) when compared to placentae from abnormal ones (gestational diabetes, pregnancy induced hypertension, drug abuse).

Conclusion

These observations suggest that in the case of abnormal pregnancies, the fetus may require higher levels of transferrin in order to prevent iron depletion due to the stress from the placental dysfunction.  相似文献   
53.
The important role of the cytoskeletal scaffold is increasingly recognized in host-pathogen interactions. The cytoskeleton potentially functions as a weapon for both the plants defending themselves against fungal or oomycete parasites, and for the pathogens trying to overcome the resisting barrier of the plants. This concept, however, had not been investigated in marine algae so far. We are opening this scientific chapter with our study on the functional implications of the cytoskeleton in 3 filamentous brown algal species infected by the marine oomycete Eurychasma dicksonii. Our observations suggest that the cytoskeleton is involved in host defense responses and in fundamental developmental stages of E. dicksonii in its algal host.Oomycetes are important plant and animal pathogens and are the cause of significant crop losses every year. Hence, a plethora of studies with different cultivated and model plant species investigate the diversity of parasite infection pathways and host defense responses.1 However, little information is available on the interactions between algae and marine oomycetes, despite the epidemic outbreaks reported2 and the huge impact on intensive algal aquaculture.3Eurychasma dicksonii is a biotrophic, intracellular marine oomycete, capable to infect at least 45 species of brown seaweeds in laboratory cultures.4 Molecular data reveal that E. dicksonii has a basal phylogenetic position in the oomycete lineage.5,6 The basic stages of the infection are known: the attachment of the parasite spore to the host cell wall, the penetration of its cytoplasm into the host cell, the formation of a multinucleated, unwalled thallus, and zoosporogenesis.6 Hitherto, though, there was no knowledge about the role of cytoskeleton in the context of infection, which stimulated our research.In land plants, reorganization of the cytoskeleton is part of the reaction to infection by fungal pathogens. The rearrangement of the cytoplasm and the relocation of the nuclei and other organelles are accompanied by rapid rearrangements of the cytoskeletal elements.7 The plant cytoskeleton shows an extreme plasticity in order to serve the intracellular realignment.At the same time, this indicates that the plant cytoskeleton could be the parasite’s target by producing anti-cytoskeletal compounds in an effort to overcome plant resistance, a mechanism known in several fungal and oomycete pathogens of higher plants.8,9Consequently, the changes in microtubule (MT) organization are associated with both the plant defense and/or susceptibility toward oomycetes, respectively.10 Therefore, our research on the organization and role of cytoskeleton in the host and the parasite sheds some light into the enormous variability in the specificity of the recognition, defense, and infection mechanisms.  相似文献   
54.
The aim of this study was to assess and characterize the stability of multilamellar liposomes as a delivery vehicle for triamcinolone acetonide. A standardized preparation method for a liposomal delivery vehicle was developed, after varying composition and storage conditions, and assessing encapsulation efficiency and loss of active principle. The assessment of temperature as a factor in formula stability during storage showed that stability improved under refrigeration (4–6°C) (less early diffusion of active principle through the liposomal wall), in comparison with samples stored at room temperature. To improve stability, cholesterol was added to some formulae, which although resulting in a decrease in average encapsulation efficiency, mitigated subsequent losses of retained active principle (formulae 4, 5, and 6), in comparison with those without cholesterol (formulae 1, 2, and 3). This was evident both under refrigerated and room-temperature conditions. Finally, after testing the effects of adding an antioxidant and/or preservative to the formulae, a liposomal design was achieved with acceptable stability, vesicle dimensions, and encapsulation efficiency.  相似文献   
55.
The XI International Rotifer Symposium was held during 11–18 March, 2006 at the National Autonomous University of Mexico Campus Iztacala located at the North Mexico City (Mexico). These triennial international meetings, first organized in Austria by Late Ruttner-Kolisko in September 1976, are gradually becoming the focal point of discussion and collaboration from rotifer workers across the world. The present XI symposium was attended by 125 participants from 20 nations. During this meeting, different themes of rotifer research from morphology to molecular biology were considered. In addition, there were four invited lectures and four workshops covering different themes of the symposium. During the last 30 years, rotifer research has witnessed gradual shift from the conventional morphological taxonomy to molecular and evolutionary systematics. While the basic rotifer ecological studies continue today, applied areas such as ecotoxicology and aquaculture have taken key roles in the recent meetings. The international rotifer meetings provide ample opportunities not only for exchange of ideas and recent research, but also for material and in establishing inter-personal relationships. Over the last 30 years, the number of participants attending the rotifer meetings has increased.  相似文献   
56.
Most natural populations of Drosophila melanogaster are polymorphic for two major electrophoretic variants at the esterase-6 locus. The frequency of the EST 6F allozyme is greatest in populations in warmer latitudes, whereas the EST 6S allozyme is predominant in colder latitudes. Latitudinal clines in electromorph frequencies are found on three continents. Purified preparations of the allozymes have been characterized for their pH optimum, substrate specificity, organophosphate inhibition, alcohol activation, thermal stability, and kinetic parameters. These and previous analyses of the EST 6 allozymes reveal that the two variants have differences in their physical and kinetic properties that may provide a basis for the selective maintenance of the polymorphisms and an explanation of the clinal variation observed in natural populations.   相似文献   
57.

Background  

Helicobacter pylori infection is one of the most common infections worldwide and is associated with gastric cancer and peptic ulcer. Bacterial virulence factors such as CagA have been shown to increase the risk of both diseases. Studies have suggested a causal role for CagA EPIYA polymorphisms in gastric carcinogenesis, and it has been shown to be geographically diverse. We studied associations between H. pylori CagA EPIYA patterns and gastric cancer and duodenal ulcer, in an ethnically admixed Western population from Brazil. CagA EPIYA was determined by PCR and confirmed by sequencing. A total of 436 patients were included, being 188 with gastric cancer, 112 with duodenal ulcer and 136 with gastritis.  相似文献   
58.

Background

Human T-cell leukemia virus type 1 (HTLV-1) causes adult T-cell leukemia (ATL) and HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) in a small percentage of infected individuals. ATL is often associated with general immune suppression and an impaired HTLV-1-specific T-cell response, an important host defense system. We previously found that a small fraction of asymptomatic HTLV-1-carriers (AC) already showed impaired T-cell responses against the major target antigen, Tax. However, it is unclear whether the impaired HTLV-1 Tax-specific T-cell response in these individuals is an HTLV-1-specific phenomenon, or merely reflects general immune suppression. In this study, in order to characterize the impaired HTLV-1-specific T-cell response, we investigated the function of Tax-specific CD8+ T-cells in various clinical status of HTLV-1 infection.

Results

By using tetramers consisting of HLA-A*0201, -A*2402, or -A*1101, and corresponding Tax epitope peptides, we detected Tax-specific CD8+ T-cells in the peripheral blood from 87.0% of ACs (n = 20/23) and 100% of HAM/TSP patients (n = 18/18) tested. We also detected Tax-specific CD8+ T-cells in 38.1% of chronic type ATL (cATL) patients (n = 8/21), although its frequencies in peripheral blood CD8+ T cells were significantly lower than those of ACs or HAM/TSP patients. Tax-specific CD8+ T-cells detected in HAM/TSP patients proliferated well in culture and produced IFN-γ when stimulated with Tax peptides. However, such functions were severely impaired in the Tax-specific CD8+ T-cells detected in cATL patients. In ACs, the responses of Tax-specific CD8+ T-cells were retained in most cases. However, we found one AC sample whose Tax-specific CD8+ T-cells hardly produced IFN-γ, and failed to proliferate and express activation (CD69) and degranulation (CD107a) markers in response to Tax peptide. Importantly, the same AC sample contained cytomegalovirus (CMV) pp65-specific CD8+ T-cells that possessed functions upon CMV pp65 peptide stimulation. We further examined additional samples of two smoldering type ATL patients and found that they also showed dysfunctions of Tax-specific but not CMV-specific CD8+ T-cells.

Conclusions

These findings indicated that Tax-specific CD8+ T-cells were scarce and dysfunctional not only in ATL patients but also in a limited AC population, and that the dysfunction was selective for HTLV-1-specifc CD8+ T-cells in early stages.  相似文献   
59.
60.
Symbiotic relationships between phytoplankton and N2-fixing microorganisms play a crucial role in marine ecosystems. The abundant and widespread unicellular cyanobacteria group A (UCYN-A) has recently been found to live symbiotically with a haptophyte. Here, we investigated the effect of nitrogen (N), phosphorus (P), iron (Fe) and Saharan dust additions on nitrogen (N2) fixation and primary production by the UCYN-A–haptophyte association in the subtropical eastern North Atlantic Ocean using nifH expression analysis and stable isotope incubations combined with single-cell measurements. N2 fixation by UCYN-A was stimulated by the addition of Fe and Saharan dust, although this was not reflected in the nifH expression. CO2 fixation by the haptophyte was stimulated by the addition of ammonium nitrate as well as Fe and Saharan dust. Intriguingly, the single-cell analysis using nanometer scale secondary ion mass spectrometry indicates that the increased CO2 fixation by the haptophyte in treatments without added fixed N is likely an indirect result of the positive effect of Fe and/or P on UCYN-A N2 fixation and the transfer of N2-derived N to the haptophyte. Our results reveal a direct linkage between the marine carbon and nitrogen cycles that is fuelled by the atmospheric deposition of dust. The comparison of single-cell rates suggests a tight coupling of nitrogen and carbon transfer that stays balanced even under changing nutrient regimes. However, it appears that the transfer of carbon from the haptophyte to UCYN-A requires a transfer of nitrogen from UCYN-A. This tight coupling indicates an obligate symbiosis of this globally important diazotrophic association.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号