首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1801篇
  免费   202篇
  国内免费   3篇
  2006篇
  2021年   18篇
  2020年   14篇
  2019年   15篇
  2017年   14篇
  2016年   23篇
  2015年   52篇
  2014年   66篇
  2013年   73篇
  2012年   87篇
  2011年   85篇
  2010年   52篇
  2009年   48篇
  2008年   63篇
  2007年   59篇
  2006年   59篇
  2005年   70篇
  2004年   63篇
  2003年   60篇
  2002年   80篇
  2001年   67篇
  2000年   55篇
  1999年   46篇
  1998年   24篇
  1997年   26篇
  1996年   19篇
  1995年   20篇
  1994年   23篇
  1993年   32篇
  1992年   33篇
  1991年   41篇
  1990年   30篇
  1989年   33篇
  1988年   26篇
  1987年   33篇
  1986年   24篇
  1985年   24篇
  1984年   20篇
  1983年   22篇
  1980年   19篇
  1978年   18篇
  1977年   19篇
  1976年   14篇
  1975年   14篇
  1974年   24篇
  1973年   16篇
  1972年   16篇
  1971年   16篇
  1970年   22篇
  1968年   15篇
  1967年   22篇
排序方式: 共有2006条查询结果,搜索用时 117 毫秒
111.
Calcineurin (CN) is a protein phosphatase involved in a wide range of cellular responses to calcium-mobilizing signals, and a role for this enzyme in neuropathology has been postulated. We have investigated the possibility that redox modulation of CN activity is relevant to neuropathological conditions where an imbalance in reactive oxygen species has been described. We have monitored CN activity in cultured human neuroblastoma SH-SY5Y cells and obtained evidence that CN activity is promoted by treatment with ascorbate or dithiothreitol and impaired by oxidative stress. Evidence for the existence of a redox regulation of this enzyme has been also obtained by overexpression of wild-type antioxidant Cu,Zn superoxide dismutase (SOD1) that promotes CN activity and protects it from oxidative inactivation. On the contrary, overexpression of mutant SOD1s associated with familial amyotrophic lateral sclerosis (FALS) impairs CN activity both in transfected human neuroblastoma cell lines and in the motor cortex of brain from FALS-transgenic mice. These data suggest that CN might be a target in the pathogenesis of SOD1-linked FALS.  相似文献   
112.
Four tyrosine residues have been identified as phosphorylation sites in the tyrosine kinase isoform of the heparin-binding fibroblast growth factor receptor flg (FGF-R1). Baculoviral-insect cell-derived recombinant FGF-R1 was phosphorylated and fragmented with trypsin while immobilized on heparin-agarose beads. Phosphotyrosine peptides were purified by chromatography on immobilized anti-phosphotyrosine antibody and analyzed by Edman degradation and electrospray tandem mass spectrometry. Tyrosine residue 653, which is in a homologous spatial position to major autophosphorylation sites in the catalytic domain of the src and insulin receptor kinases, is the major intracellular FGF-R1 phosphorylation site. Residue 766 in the COOH-terminus outside the kinase domain is a secondary site. Tyrosine residues 154 and 307, which are in the extracellular domain of transmembrane receptor isoforms and are in an unusual sequence context for tyrosine phosphorylation, were also phosphorylated.  相似文献   
113.
We have studied the embryonic development of the transverse nerve (TN), an unpaired segmental nerve of the moth Manduca sexta. Two identified motor neurons and 16 identified neuroendocrine neurons project axons within the larval TN; therefore, the TN is both a peripheral nerve and a neurohaemal organ. At 33% of embryogenesis, and prior to the arrival of any neuronal growth cones, the position, shape, and trajectory of the TN are anticipated by two groups of nonneuronal cells that we call the strap and the bridge. At this time the strap and the bridge together consist of approximately 100 cells, all of which express a cell surface epitope recognized by the monoclonal antibody TN-1. As development proceeds, both the number of nonneuronal cells within the strap and the bridge and the fraction that expresses the TN-1 antigen(s) decrease. Moreover, individual cells within the strap become morphologically identifiable before the arrival of the neuronal growth cones. Most of the axons that project to the TN also express the TN-1 antigen(s) during their period of outgrowth. The two motor neuron growth cones are the first to reach the environment of the strap and the bridge, doing so at approximately 37%; having encountered these cellular structures, the growth cones restrict their navigation to this preexisting scaffolding, until they reach their muscle target. The neuroendocrine growth cones arrive later and also grow within the confines of the strap and the bridge (J.N. Carr and P.H. Taghert, 1988, Dev. Biol, 130, 500-512). In this first paper we describe the development of the strap and the bridge, and the interactions of the motor neuron growth cones with these structures. The observations are novel in documenting the extent and precision to which a peripheral nerve pathway is prefigured by a contiguous assemblage of nonneuronal cells.  相似文献   
114.
We have previously shown that Compound 5 (Cpd 5), an inhibitor of protein phosphatase Cdc25A, inhibits Hep3B human hepatoma cell growth. We now show that hepatocyte growth factor (HGF), a hepatocyte growth stimulant, can strongly enhance Cpd 5-induced growth inhibition in Hep3B cells, and this enhancement in cell growth inhibition is correlated with a much stronger ERK phosphorylation when compared to cells treated with Cpd 5 or HGF separately. We found that HGF/Cpd 5-induced ERK phosphorylation and cell growth inhibition were mediated by Akt (protein kinase B) pathway, since combination HGF/Cpd 5 treatment of Hep3B cells inhibited Akt phosphorylation at Ser-473 and its kinase activity, which led to the suppression of Raf-1 phosphorylation at Ser-259. The suppression of Raf-1 Ser-259 phosphorylation caused the induction of Raf-1 kinase activity, as well as hyper-ERK phosphorylation. Transient transfection of Hep3B cells with dominant negative Akt c-DNA further enhanced both Cpd 5- and HGF/Cpd 5-induced ERK phosphorylation, while over-expression of wild-type Akt c-DNA diminished their effects. In contrast, HGF antagonized the growth inhibitory actions of Cpd 5 on normal rat hepatocytes, thus showing a selective effect on tumor cells compared to normal cells. Our data suggest that Akt kinase negatively regulates MAPK activity at the Akt-Raf level. Suppression of Akt activity by either combination HGF/Cpd 5 treatment or by dominant negative Akt c-DNA transfection antagonizes the Akt inhibitory effect on Raf-1, resulting in an enhancement of Cpd 5-induced MAPK activation and cell growth inhibition.  相似文献   
115.
116.
117.

Background

Host-microbe and microbe-microbe interactions are often governed by the complex exchange of metabolites. Such interactions play a key role in determining the way pathogenic and commensal species impact their host and in the assembly of complex microbial communities. Recently, several studies have demonstrated how such interactions are reflected in the organization of the metabolic networks of the interacting species, and introduced various graph theory-based methods to predict host-microbe and microbe-microbe interactions directly from network topology. Using these methods, such studies have revealed evolutionary and ecological processes that shape species interactions and community assembly, highlighting the potential of this reverse-ecology research paradigm.

Results

NetCooperate is a web-based tool and a software package for determining host-microbe and microbe-microbe cooperative potential. It specifically calculates two previously developed and validated metrics for species interaction: the Biosynthetic Support Score which quantifies the ability of a host species to supply the nutritional requirements of a parasitic or a commensal species, and the Metabolic Complementarity Index which quantifies the complementarity of a pair of microbial organisms’ niches. NetCooperate takes as input a pair of metabolic networks, and returns the pairwise metrics as well as a list of potential syntrophic metabolic compounds.

Conclusions

The Biosynthetic Support Score and Metabolic Complementarity Index provide insight into host-microbe and microbe-microbe metabolic interactions. NetCooperate determines these interaction indices from metabolic network topology, and can be used for small- or large-scale analyses. NetCooperate is provided as both a web-based tool and an open-source Python module; both are freely available online at http://elbo.gs.washington.edu/software_netcooperate.html.  相似文献   
118.
119.
120.
The ribosome decodes mRNA by monitoring the geometry of codon–anticodon base-pairing using a set of universally conserved 16S rRNA nucleotides within the conformationally dynamic decoding site. By applying single-molecule FRET and X-ray crystallography, we have determined that conditional-lethal, streptomycin-dependence mutations in ribosomal protein S12 interfere with tRNA selection by allowing conformational distortions of the decoding site that impair GTPase activation of EF-Tu during the tRNA selection process. Distortions in the decoding site are reversed by streptomycin or by a second-site suppressor mutation in 16S rRNA. These observations encourage a refinement of the current model for decoding, wherein ribosomal protein S12 and the decoding site collaborate to optimize codon recognition and substrate discrimination during the early stages of the tRNA selection process.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号