首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   227篇
  免费   20篇
  2021年   3篇
  2018年   4篇
  2016年   6篇
  2015年   8篇
  2014年   7篇
  2013年   13篇
  2012年   10篇
  2011年   15篇
  2010年   6篇
  2009年   2篇
  2008年   7篇
  2007年   9篇
  2006年   15篇
  2005年   11篇
  2004年   7篇
  2003年   9篇
  2002年   9篇
  2001年   14篇
  2000年   7篇
  1999年   9篇
  1998年   5篇
  1996年   4篇
  1995年   3篇
  1993年   2篇
  1992年   5篇
  1991年   5篇
  1989年   6篇
  1988年   1篇
  1987年   2篇
  1986年   2篇
  1985年   7篇
  1984年   1篇
  1983年   3篇
  1982年   1篇
  1981年   1篇
  1979年   1篇
  1977年   5篇
  1975年   1篇
  1974年   1篇
  1973年   3篇
  1971年   1篇
  1968年   1篇
  1966年   2篇
  1952年   1篇
  1940年   1篇
  1931年   1篇
  1928年   2篇
  1925年   1篇
  1922年   1篇
  1912年   1篇
排序方式: 共有247条查询结果,搜索用时 15 毫秒
111.
Nitrite, a dietary constituent and endogenous signaling molecule, mediates a number of physiological responses including modulation of ischemia/reperfusion injury, glucose tolerance, and vascular remodeling. Although the exact molecular mechanisms underlying nitrite's actions are unknown, the current paradigm suggests that these effects depend on the hypoxic reduction of nitrite to nitric oxide (NO). Mitochondrial biogenesis is a fundamental mechanism of cellular adaptation and repair. However, the effect of nitrite on mitochondrial number has not been explored. Herein, we report that nitrite stimulates mitochondrial biogenesis through a mechanism distinct from that of NO. We demonstrate that nitrite significantly increases cellular mitochondrial number by augmenting the activity of adenylate kinase, resulting in AMP kinase phosphorylation, downstream activation of sirtuin-1, and deacetylation of PGC1α, the master regulator of mitochondrial biogenesis. Unlike NO, nitrite-mediated biogenesis does not require the activation of soluble guanylate cyclase and results in the synthesis of more functionally efficient mitochondria. Further, we provide evidence that nitrite mediates biogenesis in vivo. In a rat model of carotid injury, 2 weeks of continuous oral nitrite treatment postinjury prevented the hyperproliferative response of smooth muscle cells. This protection was accompanied by a nitrite-dependent upregulation of PGC1α and increased mitochondrial number in the injured artery. These data are the first to demonstrate that nitrite mediates differential signaling compared to NO. They show that nitrite is a versatile regulator of mitochondrial function and number both in vivo and in vitro and suggest that nitrite-mediated biogenesis may play a protective role in the setting of vascular injury.  相似文献   
112.
113.
Specific recognitions of GNRA tetraloops by small helical receptors are among the most widespread long-range packing interactions in large ribozymes. However, in contrast to GYRA and GAAA tetraloops, very few GNRA/receptor interactions have yet been identified to involve GGAA tetraloops in nature. A novel in vitro selection scheme based on a rigid self-assembling tectoRNA scaffold designed for isolation of intermolecular interactions with A-minor motifs has yielded new GGAA tetraloop-binding receptors with affinity in the nanomolar range. One of the selected receptors is a novel 12 nt RNA motif, (CCUGUG ... AUCUGG), that recognizes GGAA tetraloop hairpin with a remarkable specificity and affinity. Its physical and chemical characteristics are comparable to those of the well-studied '11nt' GAAA tetraloop receptor motif. A second less specific motif (CCCAGCCC ... GAUAGGG) binds GGRA tetraloops and appears to be related to group IC3 tetraloop receptors. Mutational, thermodynamic and comparative structural analysis suggests that natural and in vitro selected GNRA receptors can essentially be grouped in two major classes of GNRA binders. New insights about the evolution, recognition and structural modularity of GNRA and A-minor RNA-RNA interactions are proposed.  相似文献   
114.
The steroid hormone estradiol decreases meal size by increasing the potency of negative-feedback signals involved in meal termination. We used c-Fos immunohistochemistry, a marker of neuronal activation, to investigate the hypothesis that estradiol modulates the processing of feeding-induced negative-feedback signals within the nucleus of the solitary tract (NTS), the first central relay of the neuronal network controlling food intake, and within other brain regions related to the control of food intake. Chow-fed, ovariectomized rats were injected subcutaneously with 10 microg 17-beta estradiol benzoate or sesame oil vehicle on 2 consecutive days. Forty-eight hours after the second injections, 0, 5, or 10 ml of a familiar sweet milk diet were presented for 20 min at dark onset. Rats were perfused 100 min later, and brain tissue was collected and processed for c-Fos-like immunoreactivity. Feeding increased the number of c-Fos-positive cells in the NTS, the paraventricular nucleus of the hypothalamus (PVN), and the central nucleus of the amygdala (CeA) in oil-treated rats. Estradiol treatment further increased this response in the caudal, subpostremal, and intermediate NTS, which process negative-feedback satiation signals, but not in the rostral NTS, which processes positive-feedback gustatory signals controlling meal size. Estradiol treatment also increased feeding-induced c-Fos in the PVN and CeA. These results indicate that modest amounts of food increase neuronal activity within brain regions implicated in the control of meal size in ovariectomized rats and that estradiol treatment selectively increases this activation. They also suggest that estradiol decreases meal size by increasing feeding-related neuronal activity in multiple regions of the distributed neural network controlling meal size.  相似文献   
115.
Three tubulin isotypes from the parasitic nematode Haemonchus contortus were individually expressed in Escherichia coli, purified, and induced to polymerize into microtubules in the absence of microtubule-associated proteins. The effect of different conditions on the rate of polymerization of pure tubulin was assessed. This is the first time that recombinant alpha-tubulin has been shown to be capable of polymerization into microtubule-like structures when incubated with recombinant beta-tubulin. In addition, the present study has shown that: (1) microtubule-associated proteins are not required for tubulin polymerization; and (2) pure beta-tubulin isotype, beta12-16, alone was capable of forming microtubule-like structures in the absence of alpha-tubulin. Polymerization of the recombinant invertebrate tubulin, as measured by a spectrophotometric assay, was found to be enhanced by a concentration of tubulin >0.25 mg/mL; temperature > or =20 degrees C; 2 mM GTP; glycerol; EGTA; and Mg(2+). Polymerization was inhibited by GTP (>2 mM) and albendazole. Calcium ions and a pH range of 6 to 8.5 had no measurable effect on polymerization. Individual isotypes of tubulin polymerized to approximately the same extent as an alpha-/beta-tubulin mixture. Samples of tubulin assembled under the above conditions for 60 min were also examined under a transmission electron microscope. Although the spectrophotometric assay indicated polymerization, it did not predict the structure of the polymer. In many cases tubulin sheets, folded sheets, and rings were observed in addition to, or instead of, microtubule-like structures.  相似文献   
116.
The therapeutic arsenal for the control of helminth infections contains only a few chemical classes. The development and spread of resistance has eroded the utility of most currently available anthelmintics, at least for some indications, and is a constant threat to further reduce the options for treatment. Discovery and development of novel anthelmintic templates is strategically necessary to preserve the economic and health advantages now gained through chemotherapy. As the costs of development escalate, the question of how best to discover new drugs becomes paramount. Although random screening in infected animals led to the discovery of all currently available anthelmintics, cost constraints and a perception of diminishing returns require new approaches. Taking a cue from drug discovery programmes for human illnesses, we suggest that mechanism-based screening will provide the next generation of anthelmintic molecules. Critical to success in this venture will be the exploitation of the Caenorhabditis elegans genome through bioinformatics and genetic technologies. The greatest obstacle to success in this endeavour is the paucity of information available about the molecular physiology of helminths, making the choice of a discovery target a risky proposition.  相似文献   
117.
Pseudomonas aeruginosa colonizes and infects human tissues, although the mechanisms by which the organism evades the normal, predominantly neutrophilic, host defenses are unclear. Phenazine products of P. aeruginosa can induce death in Caenorhabditis elegans. We hypothesized that phenazines induce death of human neutrophils, and thus impair neutrophil-mediated bacterial killing. We investigated the effects of two phenazines, pyocyanin and 1-hydroxyphenazine, upon apoptosis of neutrophils in vitro. Pyocyanin induced a concentration- and time-dependent acceleration of neutrophil apoptosis, with 50 microM pyocyanin causing a 10-fold induction of apoptosis at 5 h (p < 0.001), a concentration that has been documented in sputum from patients colonized with P. aeruginosa. 1-hydroxyphenazine was without effect. In contrast to its rapid induction of neutrophil apoptosis, pyocyanin did not induce significant apoptosis of monocyte-derived macrophages or airway epithelial cells at time points up to 24 h. Comparison of wild-type and phenazine-deleted strains of P. aeruginosa showed a highly significant reduction in neutrophil killing by the phenazine-deleted strain. In clinical isolates of P. aeruginosa pyocyanin production was associated with a proapoptotic effect upon neutrophils in culture. Pyocyanin-induced neutrophil apoptosis was not delayed either by treatment with LPS, a powerfully antiapoptotic bacterial product, or in neutrophils from cystic fibrosis patients. Pyocyanin-induced apoptosis was associated with rapid and sustained generation of reactive oxygen intermediates and subsequent reduction of intracellular cAMP. Treatment of neutrophils with either antioxidants or synthetic cAMP analogues significantly abrogated pyocyanin-induced apoptosis. We conclude that pyocyanin-induced neutrophil apoptosis may be a clinically important mechanism of persistence of P. aeruginosa in human tissue.  相似文献   
118.
Caenorhabditis elegans contains 3 homologs of presenilin genes that are associated with Alzheimer s disease. Loss-of-function mutations in C. elegans genes cause a defect in egg laying. In humans, loss of presenilin-1 (PS1) function reduces amyloid-beta peptide processing from the amyloid protein precursor. Worms were screened for compounds that block egg laying, phenocopying presenilin loss of function. To accommodate even relatively high throughput screening, a semi-automated method to quantify egg laying was devised by measuring the chitinase released into the culture medium. Chitinase is released by hatching eggs, but little is shed into the medium from the body cavity of a hermaphrodite with an egg laying deficient (egl) phenotype. Assay validation involved measuring chitinase release from wild-type C. elegans (N2 strain), sel-12 presenilin loss-of-function mutants, and 2 strains of C. elegans with mutations in the egl-36 K(+) channel gene. Failure to find specific presenilin inhibitors in this collection likely reflects the small number of compounds tested, rather than a flaw in screening strategy. Absent defined biochemical pathways for presenilin, this screening method, which takes advantage of the genetic system available in C. elegans and its historical use for anthelminthic screening, permits an entry into mechanism-based discovery of drugs for Alzheimer's disease.  相似文献   
119.
Why veterinarians should care more about parasitology   总被引:3,自引:0,他引:3  
  相似文献   
120.
A whole-genome scan was conducted on 328 F(2) progeny in a Wagyu x Limousin cross to identify quantitative trait loci (QTL) affecting palatability and fatty acid composition of beef at an age-constant endpoint. We have identified seven QTL on five chromosomes involved in lipid metabolism and tenderness. None of the genes encoding major enzymes involved in fatty acid metabolism, such as fatty acid synthase (FASN), acetyl-CoA carboxylase alpha (ACACA), solute carrier family 2 (facilitated glucose transporter) member 4 (SLC2A4), stearoyl-CoA desaturase (SCD) and genes encoding the subunits of fatty acid elongase, was located in these QTL regions. The present study may lead to a better-tasting and healthier product for consumers through improved selection for palatability and lipid content of beef.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号