首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2705篇
  免费   259篇
  2022年   26篇
  2021年   48篇
  2020年   22篇
  2019年   37篇
  2018年   45篇
  2017年   33篇
  2016年   67篇
  2015年   121篇
  2014年   124篇
  2013年   165篇
  2012年   156篇
  2011年   197篇
  2010年   119篇
  2009年   105篇
  2008年   138篇
  2007年   198篇
  2006年   177篇
  2005年   159篇
  2004年   132篇
  2003年   131篇
  2002年   156篇
  2001年   27篇
  2000年   18篇
  1999年   29篇
  1998年   37篇
  1997年   27篇
  1996年   24篇
  1995年   26篇
  1994年   21篇
  1993年   32篇
  1992年   19篇
  1991年   20篇
  1990年   18篇
  1989年   17篇
  1988年   23篇
  1987年   22篇
  1986年   22篇
  1985年   17篇
  1984年   15篇
  1983年   8篇
  1982年   9篇
  1981年   16篇
  1980年   23篇
  1979年   10篇
  1978年   16篇
  1975年   14篇
  1973年   13篇
  1972年   10篇
  1971年   12篇
  1969年   8篇
排序方式: 共有2964条查询结果,搜索用时 312 毫秒
951.
Lafora progressive myoclonus epilepsy [LD (Lafora disease)] is a fatal autosomal recessive neurodegenerative disorder caused by loss-of-function mutations in either the EPM2A gene, encoding the dual-specificity phosphatase laforin, or the EPM2B gene, encoding the E3-ubiquitin ligase malin. Previously, we and others showed that laforin and malin form a functional complex that regulates multiple aspects of glycogen metabolism, and that the interaction between laforin and malin is enhanced by conditions activating AMPK (AMP-activated protein kinase). In the present study, we demonstrate that laforin is a phosphoprotein, as indicated by two-dimensional electrophoresis, and we identify Ser(25) as the residue involved in this modification. We also show that Ser(25) is phosphorylated both in vitro and in vivo by AMPK. Lastly, we demonstrate that this residue plays a critical role for both the phosphatase activity and the ability of laforin to interact with itself and with previously established binding partners. The results of the present study suggest that phosphorylation of laforin-Ser(25) by AMPK provides a mechanism to modulate the interaction between laforin and malin. Regulation of this complex is necessary to maintain normal glycogen metabolism. Importantly, Ser(25) is mutated in some LD patients (S25P), and our results begin to elucidate the mechanism of disease in these patients.  相似文献   
952.
The P2Y(2) receptor (P2Y2-R) antagonizes sodium reabsorption in the kidney. Apart from its effect in distal nephron, hypothetically, P2Y(2)-R may modulate activity/abundances of sodium transporters/channel subunits along the nephron via antagonism of aldosterone or vasopressin or interaction with mediators such as nitric oxide (NO), and prostaglandin E(2) (PGE(2)) or oxidative stress (OS). To determine the extent of the regulatory role of P2Y(2)-R in renal sodium reabsorption, in study 1, we fed P2Y(2)-R knockout (KO; n = 5) and wild-type (WT; n = 5) mice a high (3.15%)-sodium diet (HSD) for 14 days. Western blotting revealed significantly higher protein abundances for cortical and medullary bumetanide-sensitive Na-K-2Cl cotransporter (NKCC2), medullary α-1-subunit of Na-K-ATPase, and medullary α-subunit of the epithelial sodium channel (ENaC) in KO vs. WT mice. Molecular analysis of urine showed increased excretion of nitrates plus nitrites (NOx), PGE(2), and 8-isoprostane in the KO, relative to WT mice, supporting a putative role for these molecules in determining alterations of proteins involved in sodium transport along the nephron. To determine whether genotype differences in response to aldosterone might have played a role in these differences due to HSD, in study 2 aldosterone levels were clamped (by osmotic minipump infusion). Clamping aldosterone (with HSD) led to significantly impaired natriuresis with elevated Na/H exchanger isoform 3 in the cortex, and NKCC2 in the medulla, and modest but significantly lower levels of NKCC2, and α- and β-ENaC in the cortex of KO vs. WT mice. This was associated with significantly reduced urinary NOx in the KO, although PGE(2) and 8-isoprostane remained significantly elevated vs. WT mice. Taken together, our results suggest that P2Y(2)-R is an important regulator of sodium transporters along the nephron. Pre- or postreceptor differences in the response to aldosterone, perhaps mediated via prostaglandins or changes in NOS activity or OS, likely play a role.  相似文献   
953.
Barth syndrome (BTHS) is a mitochondrial myopathy characterized by reports of exercise intolerance. We sought to determine if 1) BTHS leads to abnormalities of skeletal muscle O(2) extraction/utilization and 2) exercise intolerance in BTHS is related to impaired O(2) extraction/utilization, impaired cardiac function, or both. Participants with BTHS (age: 17 ± 5 yr, n = 15) and control participants (age: 13 ± 4 yr, n = 9) underwent graded exercise testing on a cycle ergometer with continuous ECG and metabolic measurements. Echocardiography was performed at rest and at peak exercise. Near-infrared spectroscopy of the vastus lateralis muscle was continuously recorded for measurements of skeletal muscle O(2) extraction. Adjusting for age, peak O(2) consumption (16.5 ± 4.0 vs. 39.5 ± 12.3 ml·kg(-1)·min(-1), P < 0.001) and peak work rate (58 ± 19 vs. 166 ± 60 W, P < 0.001) were significantly lower in BTHS than control participants. The percent increase from rest to peak exercise in ejection fraction (BTHS: 3 ± 10 vs. control: 19 ± 4%, P < 0.01) was blunted in BTHS compared with control participants. The muscle tissue O(2) saturation change from rest to peak exercise was paradoxically opposite (BTHS: 8 ± 16 vs. control: -5 ± 9, P < 0.01), and the deoxyhemoglobin change was blunted (BTHS: 0 ± 12 vs. control: 10 ± 8, P < 0.09) in BTHS compared with control participants, indicating impaired skeletal muscle extraction in BTHS. In conclusion, severe exercise intolerance in BTHS is due to both cardiac and skeletal muscle impairments that are consistent with cardiac and skeletal mitochondrial myopathy. These findings provide further insight to the pathophysiology of BTHS.  相似文献   
954.
Previous studies have shown that exposure to a hypoxic in vitro environment increases the secretion of pro-angiogenic growth factors by human adipose-derived stromal cells (hASCs) [Cao Y, et al., Biochem Biophys Res Commun 332: 370-379, 2005; Kokai LE, et al., Plast Reconstr Surg 116: 1453-1460, 2005; Park BS, et al., Biomed Res (Tokyo) 31: 27-34, 2010; Rasmussen JG, et al., Cytotherapy 13: 318-328, 2010; Rehman J, et al., Circulation 109: 1292-1298, 2004]. Previously, it has been demonstrated that hASCs can differentiate into pericytes and promote microvascular stability and maintenance during angiogenesis in vivo (Amos PJ, et al., Stem Cells 26: 2682-2690, 2008; Traktuev DO, et al., Circ Res 102: 77-85, 2008). In this study, we tested the hypotheses that angiogenic induction can be increased and pericyte differentiation decreased by pretreatment of hASCs with hypoxic culture and that hASCs are similar to human bone marrow-derived stromal cells (hBMSCs) in these regards. Our data confirms previous studies showing that hASCs: 1) secrete pro-angiogenic proteins, which are upregulated following culture in hypoxia, and 2) migrate up gradients of PDGF-BB in vitro, while showing for the first time that a rat mesenteric model of angiogenesis induced by 48/80 increases the propensity of both hASCs and hBMSCs to assume perivascular phenotypes following injection. Moreover, culture of both cell types in hypoxia before injection results in a biphasic vascular length density response in this model of inflammation-induced angiogenesis. The effects of hypoxia and inflammation on the phenotype of adult progenitor cells impacts both the therapeutic and the basic science applications of the cell types, as hypoxia and inflammation are common features of natural and pathological vascular compartments in vivo.  相似文献   
955.

Background:

In a previous prospective study, the risk of concussion and all injury was more than threefold higher among Pee Wee ice hockey players (ages 11–12 years) in a league that allows bodychecking than among those in a league that does not. We examined whether two years of bodychecking experience in Pee Wee influenced the risk of concussion and other injury among players in a Bantam league (ages 13–14) compared with Bantam players introduced to bodychecking for the first time at age 13.

Methods:

We conducted a prospective cohort study involving hockey players aged 13–14 years in the top 30% of divisions of play in their leagues. Sixty-eight teams from the province of Alberta (n = 995), whose players had two years of bodychecking experience in Pee Wee, and 62 teams from the province of Quebec (n = 976), whose players had no bodychecking experience in Pee Wee, participated. We estimated incidence rate ratios (IRRs) for injury and for concussion.

Results:

There were 272 injuries (51 concussions) among the Bantam hockey players who had bodychecking experience in Pee Wee and 244 injuries (49 concussions) among those without such experience. The adjusted IRRs for game-related injuries and concussion overall between players with bodychecking experience in Pee Wee and those without it were as follows: injury overall 0.85 (95% confidence interval [CI] 0.63 to 1.16); concussion overall 0.84 (95% CI 0.48 to 1.48); and injury resulting in more than seven days of time loss (i.e., time between injury and return to play) 0.67 (95% CI 0.46 to 0.99). The unadjusted IRR for concussion resulting in more than 10 days of time loss was 0.60 (95% CI 0.26 to 1.41).

Interpretation:

The risk of injury resulting in more than seven days of time loss from play was reduced by 33% among Bantam hockey players in a league where bodychecking was allowed two years earlier in Pee Wee compared with Bantam players introduced to bodychecking for the first time at age 13. In light of the increased risk of concussion and other injury among Pee Wee players in a league where bodychecking is permitted, policy regarding the age at which hockey players are introduced to bodychecking requires further consideration.Rates of participation in youth-level ice hockey are high in North America.1,2 There is growing concern regarding the impact of concussion in this population.35 Body-checking is the reported mechanism for 45%–86% of injuries in youth ice hockey.511 Internationally, the age group at which bodychecking is introduced varies. In Canada, bodychecking is introduced in Pee Wee leagues (ages 11–12 years), except in the province of Quebec, where it is introduced in Bantam (ages 13–14).12The age at which bodychecking should be introduced is controversial. We recently reported that the risk of injury and concussion in a Pee Wee league that allows bodychecking was more than threefold higher than in a Pee Wee league that does not allow bodychecking.9 Findings from systematic reviews support these findings.13,14Injury rates may increase when players begin to learn bodychecking, because it is a new skill. If so, injury rates would be expected to be higher among players without bodychecking experience in Pee Wee (i.e., those in Quebec) than among players introduced to body-checking two years earlier in Pee Wee (e.g., in Alberta). We examined whether the risk of concussion and other injury among hockey players in Bantam leagues differed between players with and those without bodychecking experience in Pee Wee.  相似文献   
956.
The kinase VRK1 has been implicated in mitotic and meiotic progression in invertebrate species, but whether it mediates these events during mammalian gametogenesis is not completely understood. Previous work has demonstrated a role for mammalian VRK1 in proliferation of male spermatogonia, yet whether VRK1 plays a role in meiotic progression, as seen in Drosophila, has not been determined. Here, we have established a mouse strain bearing a gene trap insertion in the VRK1 locus that disrupts Vrk1 expression. In addition to the male proliferation defects, we find that reduction of VRK1 activity causes a delay in meiotic progression during oogenesis, results in the presence of lagging chromosomes during formation of the metaphase plate, and ultimately leads to the failure of oocytes to be fertilized. The activity of at least one phosphorylation substrate of VRK1, p53, is not required for these defects. These results are consistent with previously defined functions of VRK1 in meiotic progression in Drosophila oogenesis, and indicate a conserved role for VRK1 in coordinating proper chromosomal configuration in female meiosis.  相似文献   
957.
Chemical Exchange Saturation Transfer (CEST) is an MRI approach that can indirectly detect exchange broadened protons that are invisible in traditional NMR spectra. We modified the CEST pulse sequence for use on high-resolution spectrometers and developed a quantitative approach for measuring exchange rates based upon CEST spectra. This new methodology was applied to the rapidly exchanging Hδ1 and Hε2 protons of His57 in the catalytic triad of bovine chymotrypsinogen-A (bCT-A). CEST enabled observation of Hε2 at neutral pH values, and also allowed measurement of solvent exchange rates for His57-Hδ1 and His57-Hε2 across a wide pH range (3–10). Hδ1 exchange was only dependent upon the charge state of the His57 (k ex,Im+ = 470 s−1, k ex,Im = 50 s−1), while Hε2 exchange was found to be catalyzed by hydroxide ion and phosphate base ( k\textOH - k_{{{\text{OH}}^{ - } }}  = 1.7 × 1010 M−1 s−1, k\textHPO42 - k_{{{\text{HPO}}_{4}^{2 - } }}  = 1.7 × 106 M−1 s−1), reflecting its greater exposure to solute catalysts. Concomitant with the disappearance of the Hε2 signal as the pH was increased above its pK a, was the appearance of a novel signal (δ = 12 ppm), which we assigned to Hγ of the nearby Ser195 nucleophile, that is hydrogen bonded to Nε2 of neutral His57. The chemical shift of Hγ is about 7 ppm downfield from a typical hydroxyl proton, suggesting a highly polarized O–Hγ bond. The significant alkoxide character of Oγ indicates that Ser195 is preactivated for nucleophilic attack before substrate binding. CEST should be generally useful for mechanistic investigations of many enzymes with labile protons involved in active site chemistry.  相似文献   
958.
Design, synthesis, and SAR of 7-oxopyrrolopyridine-derived DPP4 inhibitors are described. The preferred stereochemistry of these atropisomeric biaryl analogs has been identified as Sa. Compound (+)-3t, with a K(i) against DPP4, DPP8, and DPP9 of 0.37 nM, 2.2, and 5.7 μM, respectively, showed a significant improvement in insulin response after single doses of 3 and 10 μmol/kg in ob/ob mice.  相似文献   
959.
1. Foraging herbivores must deal with plant characteristics that inhibit feeding and they must avoid being eaten. Principally, toxins limit food intake, while predation risk alters how long animals are prepared to harvest resources. Each of these factors strongly affects how herbivores use food patches, and both constraints can pose immediate proximate costs and long-term consequences to fitness. 2. Using a generalist mammalian herbivore, the common brushtail possum (Trichosurus vulpecula), our aim was to quantitatively compare the influence of plant toxin and predation risk on foraging decisions. 3. We performed a titration experiment by offering animals a choice between non-toxic food at a risky patch paired with food with one of five toxin concentrations at a safe patch. This allowed us to identify the tipping point, where the cost of toxin in the safe food patch was equivalent to the perceived predation risk in the alternative patch. 4. At low toxin concentration, animals ate more from the safe than the risky patch. As toxin concentration increased at the safe patch, intake shifted until animals ate mainly from the risky patch. This shift was associated with behavioural changes: animals spent more time and fed longer at the risky patch, while vigilance increased at both risky and safe patches. 5. Our results demonstrate that the variation in toxin concentration, which occurs intraspecifically among plants, can critically influence the relative cost of predation risk on foraging. We show that herbivores quantify, compare and balance these two different but proximate costs, altering their foraging patterns in the process. This has potential ecological and evolutionary implications for the production of plant defence compounds in relation to spatial variation in predation risk to herbivores.  相似文献   
960.
All members of the kinesin superfamily of molecular motors contain an unusual structural motif consisting of an α-helix that is interrupted by a flexible loop, referred to as L5. We have examined the function of L5 in the mitotic kinesin Eg5 by combining site-directed mutagenesis of L5 with transient state kinetics, molecular dynamics simulations, and docking using cryo electron microscopy density. We find that mutation of a proline residue located at a turn within this loop profoundly slows nucleotide-induced structural changes both at the catalytic site as well as at the microtubule binding domain and the neck linker. Molecular dynamics simulations reveal that this mutation affects the dynamics not only of L5 itself but also of the switch I structural elements that sense ATP binding to the catalytic site. Our results lead us to propose that L5 regulates the rate of conformational change in key elements of the nucleotide binding site through its interactions with α3 and in so doing controls the speed of movement and force generation in kinesin motors.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号