首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6722篇
  免费   527篇
  国内免费   1篇
  2023年   39篇
  2022年   97篇
  2021年   192篇
  2020年   118篇
  2019年   132篇
  2018年   155篇
  2017年   124篇
  2016年   218篇
  2015年   393篇
  2014年   422篇
  2013年   494篇
  2012年   624篇
  2011年   559篇
  2010年   367篇
  2009年   353篇
  2008年   456篇
  2007年   416篇
  2006年   358篇
  2005年   300篇
  2004年   266篇
  2003年   288篇
  2002年   258篇
  2001年   50篇
  2000年   36篇
  1999年   65篇
  1998年   50篇
  1997年   46篇
  1996年   27篇
  1995年   35篇
  1994年   36篇
  1993年   31篇
  1992年   28篇
  1991年   18篇
  1990年   8篇
  1989年   12篇
  1988年   19篇
  1987年   8篇
  1986年   12篇
  1985年   5篇
  1984年   10篇
  1983年   7篇
  1982年   10篇
  1981年   6篇
  1979年   7篇
  1978年   6篇
  1977年   5篇
  1974年   9篇
  1973年   5篇
  1970年   5篇
  1969年   8篇
排序方式: 共有7250条查询结果,搜索用时 140 毫秒
261.
262.
SAR studies on a series of piperazinebenzenes directed toward the human melanocortin-4 receptor resulted in potent MC4R agonists. Replacement of the triazole moiety of an initial lead 4 by a basic nitrogen baring a lipophilic side-chain increased the binding affinities of these compounds. Analogs bearing an additional hetero-atom in the side-chain possessed good agonist potency. Thus, 11h had a Ki of 11 nM, and 13g exhibited an EC50 of 3.8 nM and a Ki of 6.4 nM.  相似文献   
263.
The sense of taste responds to a large variety of stimuli through specific transduction mechanisms. The molecular events in the perception of bitter taste are believed to start with the binding of specific water-soluble molecules to G-protein-coupled receptors encoded by the type 2 family of taste receptor genes and expressed at the surface of taste receptor cells. Recent advances in the identification and cloning of the complete repertoire of genes of this family in humans and rodents provide an opportunity to address unresolved questions in bitter taste. The functional characterization of some of the receptors that these genes encode suggests that it will be possible to understand more precisely their specific functions.  相似文献   
264.
Many cool-season grasses harbor fungal endophytes in the genus Neotyphodium, which enhance host fitness, but some also produce metabolites--such as ergovaline--believed to cause livestock toxicoses. In Claviceps species the first step in ergot alkaloid biosynthesis is thought to be dimethylallyltryptophan (DMAT) synthase, encoded by dmaW, previously cloned from Claviceps fusiformis. Here we report the cloning and characterization of dmaW from Neotyphodium sp. isolate Lp1, an endophyte of perennial ryegrass (Lolium perenne). The gene was then disrupted, and the mutant failed to produce any detectable ergovaline or simpler ergot and clavine alkaloids. The disruption was complemented with the C. fusiformis gene, which restored ergovaline production. Thus, the biosynthetic role of DMAT synthase was confirmed, and a mutant was generated for future studies of the ecological and agricultural importance of ergot alkaloids in endophytes of grasses.  相似文献   
265.
BACKGROUND: A 28-bp repeat polymorphism in the 5'UTR of the thymidylate synthase (TYMS) gene represents a candidate risk factor for neural tube defects (NTDs) due to involvement in folate-dependent homocysteine metabolism. Non-Hispanic, white, U.S. citizens carrying at least one 2x 28-bp repeat allele have recently been shown to be at a four-fold increased risk of spina bifida (SB). We investigated the association between this polymorphism and risk of NTD in families affected by NTDs and controls from the northern United Kingdom (UK). METHODS: PCR was performed on genomic DNA extracted from blood or mouth swabs of family members affected by NTDs (mothers, fathers, and cases), and unaffected controls (mothers and infants) to determine the number of 28-bp repeat units within the promoter region of TYMS. Case-control and TDT analyses of the influence of TYMS genotype on risk of NTD, or NTD pregnancy, were conducted. RESULTS: Odds ratio (OR) analysis indicated that individuals carrying the 2x 28-bp repeat allele either in homozygous or heterozygous form, are not at increased risk of NTDs, or of having an NTD affected pregnancy. Control population allele frequencies are seen to be markedly different between the U.S. controls and those in this study. CONCLUSIONS: TYMS polymorphism appears to be not universally associated with NTD risk across Caucasian samples. The elevated risk of spina bifida in U.S. samples appears to be driven by an unusually low risk allele (2x 28 bp) frequency in control samples. Family based (TDT) testing of U.S. samples is therefore advocated.  相似文献   
266.
267.
The enteric bacterium Escherichia blattae has been analyzed for the presence of cobalamin (B12) biosynthesis and B12-dependent pathways. Biochemical studies revealed that E. blattae synthesizes B12 de novo aerobically and anaerobically. Genes exhibiting high similarity to all genes of Salmonella enterica serovar Typhimurium, which are involved in the oxygen-independent route of B12 biosynthesis, were present in the genome of E. blattae DSM 4481. The dha regulon encodes the key enzymes for the anaerobic conversion of glycerol to 1,3-propanediol, including coenzyme B12-dependent glycerol dehydratase. E. blattae DSM 4481 lacked glycerol dehydratase activity and showed no anaerobic growth with glycerol, but the genome of E. blattae DSM 4481 contained a dha regulon. The E. blattaedha regulon is unusual, since it harbors genes for two types of dihydroxyacetone kinases. The major difference to dha regulons of other enteric bacteria is the inactivation of the dehydratase-encoding gene region by insertion of a 33,339-bp prophage (MuEb). Sequence analysis revealed that MuEb belongs to the Mu family of bacteriophages. The E. blattae strains ATCC 33429 and ATCC 33430 did not contain MuEb. Accordingly, both strains harbored an intact dehydratase-encoding gene region and fermented glycerol. The properties of the glycerol dehydratases and the correlating genes (dhaBCE) of both strains were similar to other B12-dependent glycerol and diol dehydratases, but both dehydratases exhibited the highest affinity for glycerol of all B12-dependent dehydratases characterized so far. In addition to the non-functional genes encoding B12-dependent glycerol dehydratase, the genome of E. blattae DSM 4481 contained the genes for only one other B12-dependent enzyme, the methylcobalamin-dependent methionine synthase.  相似文献   
268.
269.
Amphipathic polymers derived from polysaccharides, namely hydrophobically modified pullulans, were previously suggested to be useful as polymeric substitutes of ordinary surfactants for efficient and structure-conserving solubilization of membrane proteins, and one such polymer, 18C(10), was optimized for solubilization of proteins derived from bacterial outer membranes (Duval-Terrie et al. 2003). We asked whether a similar ability to solubilize proteins could also be demonstrated in eukaryotic membranes, namely sarcoplasmic reticulum (SR) fragments, the major protein of which is SERCA1a, an integral membrane protein with Ca(2+)-dependent ATPase and Ca(2+)-pumping activity. We found that 18C(10)-mediated solubilization of these SR membranes did not occur. Simultaneously, however, we found that low amounts of this hydrophobically modified pullulan were very efficient at preventing long-term aggregation of these SR membranes. This presumably occurred because the negatively charged polymer coated the membranous vesicles with a hydrophilic corona (a property shared by many other amphipathic polymers), and thus minimized their flocculation. Reminiscent of the old Arabic gum, which stabilizes Indian ink by coating charcoal particles, the newly designed amphipathic polymers might therefore unintentionally prove useful also for stabilization of membrane suspensions.  相似文献   
270.
The synthesis of two fluorinated cationic lipids, which are analogues of frequently used synthetic gene carrier agents (including the cationic 2,3-dioleoyloxy-N-[2-(spermine-carboxamido)ethyl]-N,N-dimethyl-1-propanaminium (DOSPA) component of the commercially available liposomal Lipofectamine), and the disintegration and DNA accessibility (evaluated by the ethidium bromide (BET) intercalation assay) as well as the in vitro transfection efficacy of cationic lipoplexes formulated with these new lipids in conjunction with conventional or fluorinated helper lipids, in the absence or presence of sodium taurocholate (STC), a powerful anionic bile salt detergent, is reported. A higher stability, with respect to the STC lytic activity and DNA accessibility, of the fluorinated cationic lipoplexes as compared with their respective lipofectamine-based ones was demonstrated. Indeed, while the Lipofectamine lipoplexes were fully disintegrated at a [STC]/[lipid] molar ratio of 2000, only 40-60% of the DNA intercalation sites of the lipoplexes based on the fluorinated analogue of DOSPA were accessible to ethidium bromide. A higher transfection potential in the presence of STC was further found for the lipoplexes formulated with the fluorinated analogue of DOSPA as compared with the Lipofectamine preparation. For a STC concentration of 7.5 mM, lipofection mediated with these fluorinated lipoplexes was significantly higher (nearly 30- to 50-fold, p < 0.05) than with the Lipofectamine ones. These results confirm the remarkable transfection potential of fluorinated lipoplexes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号