首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10188篇
  免费   705篇
  国内免费   8篇
  2024年   9篇
  2023年   73篇
  2022年   241篇
  2021年   405篇
  2020年   209篇
  2019年   243篇
  2018年   292篇
  2017年   214篇
  2016年   376篇
  2015年   593篇
  2014年   635篇
  2013年   748篇
  2012年   885篇
  2011年   815篇
  2010年   493篇
  2009年   470篇
  2008年   619篇
  2007年   572篇
  2006年   495篇
  2005年   417篇
  2004年   376篇
  2003年   396篇
  2002年   352篇
  2001年   75篇
  2000年   51篇
  1999年   93篇
  1998年   78篇
  1997年   63篇
  1996年   34篇
  1995年   55篇
  1994年   49篇
  1993年   47篇
  1992年   39篇
  1991年   29篇
  1990年   16篇
  1989年   27篇
  1988年   24篇
  1987年   17篇
  1986年   19篇
  1985年   18篇
  1984年   15篇
  1983年   16篇
  1982年   20篇
  1981年   17篇
  1980年   15篇
  1979年   13篇
  1978年   15篇
  1977年   12篇
  1975年   9篇
  1974年   14篇
排序方式: 共有10000条查询结果,搜索用时 363 毫秒
381.
Plant species may remain morphologically distinct despite gene exchange with congeners, yet little is known about the genomewide pattern of introgression among species. Here we analyze the effects of persistent gene flow on genomic differentiation between the sympatric sunflower species Helianthus annuus and H. petiolaris. While the species are strongly isolated in testcrosses, genetic distances at 108 microsatellite loci and 14 sequenced genes are highly variable and much lower (on average) than for more closely related but historically allopatric congeners. Our analyses failed to detect a positive association between levels of genetic differentiation and chromosomal rearrangements (as reported in a prior publication) or proximity to QTL for morphological differences or hybrid sterility. However, a significant increase in differentiation was observed for markers within 5 cM of chromosomal breakpoints. Together, these results suggest that islands of differentiation between these two species are small, except in areas of low recombination. Furthermore, only microsatellites associated with ESTs were identified as outlier loci in tests for selection, which might indicate that the ESTs themselves are the targets of selection rather than linked genes (or that coding regions are not randomly distributed). In general, these results indicate that even strong and genetically complex reproductive barriers cannot prevent widespread introgression.  相似文献   
382.
Cobalt stress in Escherichia coli. The effect on the iron-sulfur proteins   总被引:1,自引:0,他引:1  
Cobalt is toxic for cells, but mechanisms of this toxicity are largely unknown. The biochemical and genetic experiments reported here demonstrate that iron-sulfur proteins are greatly affected in cobalt-treated Escherichia coli cells. Exposure of a wild-type strain to intracellular cobalt results in the inactivation of three selected iron-sulfur enzymes, the tRNA methylthio-transferase, aconitase, and ferrichrome reductase. Consistently, mutant strains lacking the [Fe-S] cluster assembly SUF machinery are hypersensitive to cobalt. Last, expression of iron uptake genes is increased in cells treated with cobalt. In vitro studies demonstrated that cobalt does not react directly with fully assembled [Fe-S] clusters. In contrast, it reacts with labile ones present in scaffold proteins (IscU, SufA) involved in iron-sulfur cluster biosynthesis. We propose a model wherein cobalt competes out iron during synthesis of [Fe-S] clusters in metabolically essential proteins.  相似文献   
383.
384.
385.
CD33-related Siglecs (sialic acid-binding immunoglobulin-like lectins) 5-11 are inhibitory receptors that contain a membrane proximal ITIM (immunoreceptor tyrosine-based inhibitory motif) (I/V/L/)XYXX(L/V), which can recruit SHP-1/2. However, little is known about the regulation of these receptors. SOCS3 (suppressor of cytokine signaling 3) is up-regulated during inflammation and competes with SHP-1/2 for binding to ITIM-like motifs on various cytokine receptors resulting in inhibition of signaling. We show that SOCS3 binds the phosphorylated ITIM of Siglec 7 and targets it for proteasomal-mediated degradation, suggesting that Siglec 7 is a novel SOCS target. Following ligation, the ECS E3 ligase is recruited by SOCS3 to target Siglec 7 for proteasomal degradation, and SOCS3 expression is decreased concomitantly. In addition, we found that SOCS3 expression blocks Siglec 7-mediated inhibition of cytokine-induced proliferation. This is the first time that a SOCS target has been reported to degrade simultaneously with the SOCS protein and that inhibitory receptors have been shown to be degraded in this way. This may be a mechanism by which the inflammatory response is potentiated during infection.  相似文献   
386.
387.
388.
The severe acute respiratory syndrome coronavirus (SARS-CoV) genome is predicted to encode 14 functional open reading frames, leading to the expression of up to 30 structural and non-structural protein products. The functions of a large number of viral ORFs are poorly understood or unknown. In order to gain more insight into functions and modes of action and interaction of the different proteins, we cloned the viral ORFeome and performed a genome-wide analysis for intraviral protein interactions and for intracellular localization. 900 pairwise interactions were tested by yeast-two-hybrid matrix analysis, and more than 65 positive non-redundant interactions, including six self interactions, were identified. About 38% of interactions were subsequently confirmed by CoIP in mammalian cells. Nsp2, nsp8 and ORF9b showed a wide range of interactions with other viral proteins. Nsp8 interacts with replicase proteins nsp2, nsp5, nsp6, nsp7, nsp8, nsp9, nsp12, nsp13 and nsp14, indicating a crucial role as a major player within the replication complex machinery. It was shown by others that nsp8 is essential for viral replication in vitro, whereas nsp2 is not. We show that also accessory protein ORF9b does not play a pivotal role for viral replication, as it can be deleted from the virus displaying normal plaque sizes and growth characteristics in Vero cells. However, it can be expected to be important for the virus-host interplay and for pathogenicity, due to its large number of interactions, by enhancing the global stability of the SARS proteome network, or play some unrealized role in regulating protein-protein interactions. The interactions identified provide valuable material for future studies.  相似文献   
389.
The role of DNA cytosine methylation, an epigenetic regulator of chromatin structure and function, during normal and pathological brain development and aging remains unclear. Here, we examined by MethyLight PCR the DNA methylation status at 50 loci, encompassing primarily 5' CpG islands of genes related to CNS growth and development, in temporal neocortex of 125 subjects ranging in age from 17 weeks of gestation to 104 years old. Two psychiatric disease cohorts--defined by chronic neurodegeneration (Alzheimer's) or lack thereof (schizophrenia)--were included. A robust and progressive rise in DNA methylation levels across the lifespan was observed for 8/50 loci (GABRA2, GAD1, HOXA1, NEUROD1, NEUROD2, PGR, STK11, SYK) typically in conjunction with declining levels of the corresponding mRNAs. Another 16 loci were defined by a sharp rise in DNA methylation levels within the first few months or years after birth. Disease-associated changes were limited to 2/50 loci in the Alzheimer's cohort, which appeared to reflect an acceleration of the age-related change in normal brain. Additionally, methylation studies on sorted nuclei provided evidence for bidirectional methylation events in cortical neurons during the transition from childhood to advanced age, as reflected by significant increases at 3, and a decrease at 1 of 10 loci. Furthermore, the DNMT3a de novo DNA methyl-transferase was expressed across all ages, including a subset of neurons residing in layers III and V of the mature cortex. Therefore, DNA methylation is dynamically regulated in the human cerebral cortex throughout the lifespan, involves differentiated neurons, and affects a substantial portion of genes predominantly by an age-related increase.  相似文献   
390.
The aerobic archaea possess four closely spaced, adjacent genes that encode proteins showing significant sequence identities with the bacterial and eukaryal components comprising the 2-oxoacid dehydrogenase multi-enzyme complexes. However, catalytic activities of such complexes have never been detected in the archaea, although 2-oxoacid ferredoxin oxidoreductases that catalyze the equivalent metabolic reactions are present. In the current paper, we clone and express the four genes from the thermophilic archaeon, Thermoplasma acidophilum, and demonstrate that the recombinant enzymes are active and assemble into a large (M(r) = 5 x 10(6)) multi-enzyme complex. The post-translational incorporation of lipoic acid into the transacylase component of the complex is demonstrated, as is the assembly of this enzyme into a 24-mer core to which the other components bind to give the functional multi-enzyme system. This assembled complex is shown to catalyze the oxidative decarboxylation of branched-chain 2-oxoacids and pyruvate to their corresponding acyl-CoA derivatives. Our data constitute the first proof that the archaea possess a functional 2-oxoacid dehydrogenase complex.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号