首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19645篇
  免费   1775篇
  国内免费   221篇
  2023年   136篇
  2022年   282篇
  2021年   535篇
  2020年   337篇
  2019年   361篇
  2018年   448篇
  2017年   368篇
  2016年   577篇
  2015年   987篇
  2014年   990篇
  2013年   1225篇
  2012年   1480篇
  2011年   1356篇
  2010年   869篇
  2009年   838篇
  2008年   1114篇
  2007年   999篇
  2006年   870篇
  2005年   776篇
  2004年   783篇
  2003年   746篇
  2002年   679篇
  2001年   457篇
  2000年   381篇
  1999年   382篇
  1998年   200篇
  1997年   142篇
  1996年   138篇
  1995年   172篇
  1994年   137篇
  1993年   126篇
  1992年   213篇
  1991年   219篇
  1990年   158篇
  1989年   185篇
  1988年   172篇
  1987年   148篇
  1986年   136篇
  1985年   162篇
  1984年   126篇
  1983年   103篇
  1982年   72篇
  1981年   77篇
  1980年   71篇
  1979年   87篇
  1978年   87篇
  1977年   73篇
  1975年   61篇
  1974年   62篇
  1973年   57篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
981.
Following activation through high affinity IgE receptors (FcepsilonRI), mast cells release, within a few minutes, their granule content of inflammatory and allergic mediators. FcepsilonRI-induced degranulation is a SNARE (soluble N-ethylmaleimide attachment protein receptors)-dependent fusion process. It is regulated by Rab3D, a subfamily member of Rab GTPases. Evidence exists showing that Rab3 action is calcium-regulated although the molecular mechanisms remain unclear. To obtain an understanding of Rab3D function we have searched for Rab3D-associated effectors that respond to allergic triggering through FcepsilonRI. Using the RBL-2H3 mast cell line we detected a Ser/Thr kinase activity, termed here Rak3D (from Rab3D-associated kinase), because it was specifically co-immunoprecipitated with anti-Rab3D antibody. Rak3D activity, as measured by its auto- or transphosphorylation, was maximal in resting cells and decreased upon stimulation. The down-regulation of the observed activity was blocked with EGTA, but not with other degranulation inhibitors, suggesting that its activity functions downstream of calcium influx. We found that Rak3D phosphorylates the NH(2)-terminal regulatory domain of the t-SNARE syntaxin 4, but not syntaxin 2 or 3. The phosphorylation of syntaxin 4 decreased its binding to its partner SNAP23. Thus, we propose a novel phosphorylation-dependent mechanism by which Rab3D controls SNARE assembly in a calcium-dependent manner.  相似文献   
982.
The human tissue nonspecific alkaline phosphatase (TNAP) is found in liver, kidney, and bone. Mutations in the TNAP gene can lead to Hypophosphatasia, a rare inborn disease that is characterized by defective bone mineralization. TNAP is 74% homologous to human placental alkaline phosphatase (PLAP) whose crystal structure has been recently determined at atomic resolution (Le Du, M. H., Stigbrand, T., Taussig, M. J., Ménez, A., and Stura, E. A. (2001) J. Biol. Chem, 276, 9158-9165). The degree of homology allowed us to build a reliable TNAP model to investigate the relationship between mutations associated with hypophosphatasia and their probable consequences on the activity or the structure of the enzyme. The mutations are clustered within five crucial regions, namely the active site and its vicinity, the active site valley, the homodimer interface, the crown domain, and the metal-binding site. The crown domain and the metal-binding domain are mammalian-specific and were observed for the first time in the PLAP structure. The crown domain contains a collagen binding loop. A synchrotron radiation x-ray fluorescence study confirms that the metal in the metal-binding site is a calcium ion. Several severe mutations in TNAP occur around this calcium site, suggesting that calcium may be of critical importance for the TNAP function. The presence of this extra metal-binding site gives new insights on the controversial role observed for calcium.  相似文献   
983.
To determine which domains of the N-methyl-d-aspartate (NMDA) receptor are important for the assembly of functional receptors, a number of N- and C-terminal truncations of the NR1a subunit have been produced. Truncations containing a complete ligand binding domain bound glycine antagonist and gave binding constants similar to those of the native subunit, suggesting they were folding to form antagonist binding sites. Since NR2A is not transported to the cell surface unless it is associated with NR1 (McIlhinney, R. A. J., Le Bourdellès, B., Tricuad, N., Molnar, E., Streit, P., and Whiting, P. J. (1998) Neuropharmacology 37, 1355-1367), surface expression of NR2A can be used to monitor the association of the subunits. There was progressive loss of NR2A cell surface expression as the N terminus of NR1a was shortened, with complete loss when truncated beyond residue 380. Removal of the C terminus and/or the last transmembrane domain did not affect NR2A surface expression. Similar results were obtained in co-immunoprecipitation experiments. The oligomerization status of the co-expressed NR1a constructs and NR2A subunits was investigated using a non-denaturing gel electrophoresis system (blue native-polyacrylamide gel electrophoresis) and sucrose density gradient centrifugation. The blue native-polyacrylamide gel electrophoresis system also showed that the NR1a subunits could form a homodimer, which was confirmed using soluble constructs of the NR1a subunit. Together these results suggest the residues N-terminal of residue 380 are important for the association of NR2A with NR1a and that the complete N-terminal domain of the NR1a subunit is required for oligomerization with NR2A.  相似文献   
984.
985.
In an effort to determine the genetic basis of exceptionally large tomato fruits, QTL analysis was performed on a population derived from a cross between the wild species Lycopersicon pimpinellifolium (average fruit weight, 1 g) and the L. esculentum cultivar var. Giant Heirloom, which bears fruit in excess of 1000 g. QTL analysis revealed that the majority (67%) of phenotypic variation in fruit size could be attributed to six major loci localized on chromosomes 1-3 and 11. None of the QTL map to novel regions of the genome-all have been reported in previous studies involving moderately sized tomatoes. This result suggests that no major QTL beyond those already reported were involved in the evolution of extremely large fruit. However, this is the first time that all six QTL have emerged in a single population, suggesting that exceptionally large-fruited varieties, such as Giant Heirloom, are the result of a novel combination of preexisting QTL alleles. One of the detected QTL, fw2.2, has been cloned and exerts its effect on fruit size through global control of cell division early in carpel/fruit development. However, the most significant QTL detected in this study (fw11.3, lcn11.1) maps to the bottom of chromosome 11 and seems to exert its effect on fruit size through control of carpel/locule number. A second major locus, also affecting carpel number (and hence fruit size), was mapped to chromosome 2 (fw2.1, lcn2.1). We propose that these two carpel number QTL correspond to the loci described by early classical geneticists as fasciated (f) and locule number (lc), respectively.  相似文献   
986.
987.
988.
Human placental alkaline phosphatase (PLAP) is one of three tissue-specific human APs extensively studied because of its ectopic expression in tumors. The crystal structure, determined at 1.8-A resolution, reveals that during evolution, only the overall features of the enzyme have been conserved with respect to Escherichia coli. The surface is deeply mutated with 8% residues in common, and in the active site, only residues strictly necessary to perform the catalysis have been preserved. Additional structural elements aid an understanding of the allosteric property that is specific for the mammalian enzyme (Hoylaerts, M. F., Manes, T., and Millán, J. L. (1997) J. Biol. Chem. 272, 22781-22787). Allostery is probably favored by the quality of the dimer interface, by a long N-terminal alpha-helix from one monomer that embraces the other one, and similarly by the exchange of a residue from one monomer in the active site of the other. In the neighborhood of the catalytic serine, the orientation of Glu-429, a residue unique to PLAP, and the presence of a hydrophobic pocket close to the phosphate product, account for the specific uncompetitive inhibition of PLAP by l-amino acids, consistent with the acquisition of substrate specificity. The location of the active site at the bottom of a large valley flanked by an interfacial crown-shaped domain and a domain containing an extra metal ion on the other side suggest that the substrate of PLAP could be a specific phosphorylated protein.  相似文献   
989.
The C terminus of the human V2 vasopressin receptor contains multiple phosphorylation sites including a cluster of amino acids that when phosphorylated prevents the return of the internalized receptor to the cell surface. To identify the step where the recycling process was interrupted, the trafficking of the V2 receptor was compared with that of the recycling V1a receptor after exposure to ligand. Initially, both receptors internalized in small peripheral endosomes, but a physical separation of their endocytic pathways was subsequently detected. The V1a receptor remained evenly distributed throughout the cytosol, whereas the V2 receptor accumulated in a large aggregation of vesicles in the proximity of the nucleus where it colocalized with the transferrin receptor and Rab11, a small GTP-binding protein that is concentrated in the perinuclear recycling compartment; only marginal colocalization of Rab11 with the V1a receptor was observed. Thus, the V2 receptor was sequestered in the perinuclear recycling compartment. Targeting to the perinuclear recycling compartment was determined by the receptor subtype and not by the inability to recycle, since the mutation S363A in the phosphorylation-dependent retention signal generated a V2 receptor that was recycled via the same compartment. The perinuclear recycling compartment was enriched in beta-arrestin after internalization of either wild type V2 receptor or its recycling mutant, indicating that long term interaction between the receptors and arrestin was not responsible for the intracellular retention. Thus, the fully phosphorylated retention domain overrides the natural tendency of the V2 receptor to recycle and, by preventing its exit from the perinuclear recycling compartment, interrupts its transit via the "long cycle." The data suggest that the inactivation of the domain, possibly by dephosphorylation, triggers the return of the receptor from the perinuclear compartment to the plasma membrane.  相似文献   
990.
The macrophage colony stimulating factor (M-CSF) and alpha(v)beta(3) integrins play critical roles in osteoclast function. This study examines M-CSF- and adhesion-induced signaling in prefusion osteoclasts (pOCs) derived from Src-deficient and wild-type mice. Src-deficient cells attach to but do not spread on vitronectin (Vn)-coated surfaces and, contrary to wild-type cells, their adhesion does not lead to tyrosine phosphorylation of molecules activated by adhesion, including PYK2, p130(Cas), paxillin, and PLC-gamma. However, in response to M-CSF, Src(-/-) pOCs spread and migrate on Vn in an alpha(v)beta(3)-dependent manner. Involvement of PLC-gamma activation is suggested by using a PLC inhibitor, U73122, which blocks both adhesion- and M-CSF-mediated cell spreading. Furthermore, in Src(-/-) pOCs M-CSF, together with filamentous actin, causes recruitment of beta(3) integrin and PLC-gamma to adhesion contacts and induces stable association of beta(3) integrin with PLC-gamma, phosphatidylinositol 3-kinase, and PYK2. Moreover, direct interaction of PYK2 and PLC-gamma can be induced by either adhesion or M-CSF, suggesting that this interaction may enable the formation of integrin-associated complexes. Furthermore, this study suggests that in pOCs PLC-gamma is a common downstream mediator for adhesion and growth factor signals. M-CSF-initiated signaling modulates the alpha(v)beta(3) integrin-mediated cytoskeletal reorganization in prefusion osteoclasts in the absence of c-Src, possibly via PLC-gamma.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号