首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6744篇
  免费   533篇
  国内免费   1篇
  7278篇
  2023年   42篇
  2022年   116篇
  2021年   192篇
  2020年   118篇
  2019年   132篇
  2018年   155篇
  2017年   124篇
  2016年   218篇
  2015年   394篇
  2014年   421篇
  2013年   494篇
  2012年   624篇
  2011年   560篇
  2010年   367篇
  2009年   353篇
  2008年   456篇
  2007年   416篇
  2006年   358篇
  2005年   301篇
  2004年   267篇
  2003年   289篇
  2002年   259篇
  2001年   51篇
  2000年   36篇
  1999年   66篇
  1998年   50篇
  1997年   46篇
  1996年   27篇
  1995年   35篇
  1994年   36篇
  1993年   31篇
  1992年   28篇
  1991年   17篇
  1990年   8篇
  1989年   12篇
  1988年   19篇
  1987年   7篇
  1986年   11篇
  1985年   5篇
  1984年   10篇
  1983年   7篇
  1982年   10篇
  1981年   6篇
  1979年   7篇
  1978年   6篇
  1977年   5篇
  1974年   9篇
  1973年   5篇
  1970年   5篇
  1969年   8篇
排序方式: 共有7278条查询结果,搜索用时 15 毫秒
71.
CD33-related Siglecs (sialic acid-binding immunoglobulin-like lectins) 5-11 are inhibitory receptors that contain a membrane proximal ITIM (immunoreceptor tyrosine-based inhibitory motif) (I/V/L/)XYXX(L/V), which can recruit SHP-1/2. However, little is known about the regulation of these receptors. SOCS3 (suppressor of cytokine signaling 3) is up-regulated during inflammation and competes with SHP-1/2 for binding to ITIM-like motifs on various cytokine receptors resulting in inhibition of signaling. We show that SOCS3 binds the phosphorylated ITIM of Siglec 7 and targets it for proteasomal-mediated degradation, suggesting that Siglec 7 is a novel SOCS target. Following ligation, the ECS E3 ligase is recruited by SOCS3 to target Siglec 7 for proteasomal degradation, and SOCS3 expression is decreased concomitantly. In addition, we found that SOCS3 expression blocks Siglec 7-mediated inhibition of cytokine-induced proliferation. This is the first time that a SOCS target has been reported to degrade simultaneously with the SOCS protein and that inhibitory receptors have been shown to be degraded in this way. This may be a mechanism by which the inflammatory response is potentiated during infection.  相似文献   
72.
73.

Background

The PTEN phosphatase acts on phosphatidylinositol 3,4,5-triphosphates resulting from phosphatidylinositol 3-kinase (PI3K) activation. PTEN expression has been shown to be decreased in colorectal cancer. Little is known however as to the specific cellular role of PTEN in human intestinal epithelial cells. The aim of this study was to investigate the role of PTEN in human colorectal cancer cells.

Methodology/Principal Findings

Caco-2/15, HCT116 and CT26 cells were infected with recombinant lentiviruses expressing a shRNA specifically designed to knock-down PTEN. The impact of PTEN downregulation was analyzed on cell polarization and differentiation, intercellular junction integrity (expression of cell-cell adhesion proteins, barrier function), migration (wound assay), invasion (matrigel-coated transwells) and on tumor and metastasis formation in mice. Electron microscopy analysis showed that lentiviral infection of PTEN shRNA significantly inhibited Caco-2/15 cell polarization, functional differentiation and brush border development. A strong reduction in claudin 1, 3, 4 and 8 was also observed as well as a decrease in transepithelial resistance. Loss of PTEN expression increased the spreading, migration and invasion capacities of colorectal cancer cells in vitro. PTEN downregulation also increased tumor size following subcutaneous injection of colorectal cancer cells in nude mice. Finally, loss of PTEN expression in HCT116 and CT26, but not in Caco-2/15, led to an increase in their metastatic potential following tail-vein injections in mice.

Conclusions/Significance

Altogether, these results indicate that PTEN controls cellular polarity, establishment of cell-cell junctions, paracellular permeability, migration and tumorigenic/metastatic potential of human colorectal cancer cells.  相似文献   
74.
75.
Arn1 is an integral membrane protein that mediates the uptake of ferrichrome, an important nutritional source of iron, in Saccharomyces cerevisiae. In the absence of ferrichrome, Arn1p is sorted directly from the trans-Golgi network to the vacuolar lumen for degradation. In the presence of low levels of ferrichrome, the siderophore binds to a receptor domain on Arn1, triggering the redistribution of Arn1 to the plasma membrane. When extracellular ferrichrome levels are high, Arn1 cycles between the plasma membrane and intracellular vesicles. To further understand the mechanisms of trafficking of Arn1p, we screened 4580 viable yeast deletion mutants for mislocalization of Arn1-GFP using synthetic genetic array technology. We identified over 100 genes required for trans-Golgi network-to-vacuole trafficking of Arn1-GFP and only two genes, SER1 and SER2, required for the ferrichrome-induced plasma membrane trafficking of Arn1-GFP. SER1 and SER2 encode two enzymes of the major serine biosynthetic pathway, and the Arn1 trafficking defect in the ser1Δ strain was corrected with supplemental serine or glycine. Plasma membrane trafficking of Hxt3, a structurally related glucose transporter, was unaffected by SER1 deletion. Serine is required for the synthesis of multiple cellular components, including purines, sphingolipids, and phospholipids, but of these only phosphatidylserine corrected the Arn1 trafficking defects of the ser1Δ strain. Strains with defects in phospholipid synthesis also exhibited alterations in Arn1p trafficking, indicating that the intracellular trafficking of some transporters is dependent on the phospholipid composition of the cellular membranes.  相似文献   
76.
The aerobic archaea possess four closely spaced, adjacent genes that encode proteins showing significant sequence identities with the bacterial and eukaryal components comprising the 2-oxoacid dehydrogenase multi-enzyme complexes. However, catalytic activities of such complexes have never been detected in the archaea, although 2-oxoacid ferredoxin oxidoreductases that catalyze the equivalent metabolic reactions are present. In the current paper, we clone and express the four genes from the thermophilic archaeon, Thermoplasma acidophilum, and demonstrate that the recombinant enzymes are active and assemble into a large (M(r) = 5 x 10(6)) multi-enzyme complex. The post-translational incorporation of lipoic acid into the transacylase component of the complex is demonstrated, as is the assembly of this enzyme into a 24-mer core to which the other components bind to give the functional multi-enzyme system. This assembled complex is shown to catalyze the oxidative decarboxylation of branched-chain 2-oxoacids and pyruvate to their corresponding acyl-CoA derivatives. Our data constitute the first proof that the archaea possess a functional 2-oxoacid dehydrogenase complex.  相似文献   
77.
We found that the proteome of apoptotic T cells includes prominent fragments of cellular proteins generated by caspases and that a high proportion of distinct T cell epitopes in these fragments is recognized by CD8+ T cells during HIV infection. The frequencies of effector CD8+ T cells that are specific for apoptosis-dependent epitopes correlate with the frequency of circulating apoptotic CD4+ T cells in HIV-1-infected individuals. We propose that these self-reactive effector CD8+ T cells may contribute to the systemic immune activation during chronic HIV infection. The caspase-dependent cleavage of proteins associated with apoptotic cells has a key role in the induction of self-reactive CD8+ T cell responses, as the caspase-cleaved fragments are efficiently targeted to the processing machinery and are cross-presented by dendritic cells. These findings demonstrate a previously undescribed role for caspases in immunopathology.  相似文献   
78.
Fibrillar collagens are involved in the formation of striated fibrils and are present from the first multicellular animals, sponges, to humans. Recently, a new evolutionary model for fibrillar collagens has been suggested (Boot-Handford, R. P., Tuckwell, D. S., Plumb, D. A., Farrington Rock, C., and Poulsom, R. (2003) J. Biol. Chem. 278, 31067-31077). In this model, a rare genomic event leads to the formation of the founder vertebrate fibrillar collagen gene prior to the early vertebrate genome duplications and the radiation of the vertebrate fibrillar collagen clades (A, B, and C). Here, we present the modular structure of the fibrillar collagen chains present in different invertebrates from the protostome Anopheles gambiae to the chordate Ciona intestinalis. From their modular structure and the use of a triple helix instead of C-propeptide sequences in phylogenetic analyses, we were able to show that the divergence of A and B clades arose early during evolution because alpha chains related to these clades are present in protostomes. Moreover, the event leading to the divergence of B and C clades from a founder gene arose before the appearance of vertebrates; altogether these data contradict the Boot-Handford model. Moreover, they indicate that all the key steps required for the formation of fibrils of variable structure and functionality arose step by step during invertebrate evolution.  相似文献   
79.
80.
Exposure to IR has been shown to induce the formation of senescence markers, a phenotype that coincides with lifelong delayed repair and regeneration of irradiated tissues. We hypothesized that IR‐induced senescence markers could persist long‐term in vivo, possibly contributing to the permanent reduction in tissue functionality. Here, we show that mouse tissues exposed to a sublethal dose of IR display persistent (up to 45 weeks, the maximum time analyzed) DNA damage foci and increased p16INK4a expression, two hallmarks of cellular senescence and aging. BrdU‐labeling experiments revealed that IR‐induced damaged cells are preferentially eliminated, at least partially, in a tissue‐dependent manner. Unexpectedly, the accumulation of damaged cells was found to occur independent from the DNA damage response modulator p53, and from an intact immune system, as their levels were similar in wild‐type and Rag2?/? γC?/? mice, the latter being deficient in T, B, and NK cells. Together, our results provide compelling evidence that exposure to IR induces long‐term expression of senescence markers in vivo, an effect that may contribute to the reduced tissue functionality observed in cancer survivors.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号