首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12871篇
  免费   1214篇
  国内免费   4篇
  2022年   121篇
  2021年   263篇
  2020年   154篇
  2019年   192篇
  2018年   206篇
  2017年   200篇
  2016年   333篇
  2015年   564篇
  2014年   620篇
  2013年   728篇
  2012年   927篇
  2011年   839篇
  2010年   543篇
  2009年   522篇
  2008年   700篇
  2007年   644篇
  2006年   569篇
  2005年   524篇
  2004年   457篇
  2003年   486篇
  2002年   472篇
  2001年   266篇
  2000年   219篇
  1999年   251篇
  1998年   149篇
  1997年   123篇
  1996年   89篇
  1995年   106篇
  1994年   90篇
  1993年   97篇
  1992年   164篇
  1991年   130篇
  1990年   109篇
  1989年   128篇
  1988年   124篇
  1987年   101篇
  1986年   114篇
  1985年   96篇
  1984年   73篇
  1983年   81篇
  1982年   75篇
  1980年   66篇
  1979年   69篇
  1975年   66篇
  1974年   76篇
  1973年   69篇
  1972年   75篇
  1970年   68篇
  1969年   65篇
  1967年   58篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
151.
l-Asparaginase is now known to be a potent antineoplastic agent in animals and has given complete remission in some human leukemias. Extensive clinical trials of this enzyme, however, were not possible in the past because of inadequate production of this substance. We have developed practical procedures for producing l-asparaginase in yields of sufficient quantity and purity for more extensive clinical evaluation. The nutritional requirements for optimal production of biologically active l-asparaginase by a strain of Escherichia coli have been ascertained. The highest yields of enzyme were obtained when cells were grown aerobically in a corn steep medium. Good enzyme production was associated with media containing l-glutamic acid, l-methionine, and lactic acid. The addition of glucose to the medium, however, resulted in depressed production of l-asparaginase. Sodium ion appeared to suppress l-asparaginase production. With the procedure described for isolation of biologically active l-asparaginase from E. coli, stable l-asparaginase preparations with a specific activity of 620 IU per mg of protein (1,240-fold purification with 40% total recovery) were obtained.  相似文献   
152.
153.
1. The effects of dicyclohexylcarbodi-imide, oligomycin A and aurovertin on enzyme systems related to respiratory-chain phosphorylation were compared. Dicyclohexylcarbodi-imide and oligomycin A have very similar functional effects, giving 50% inhibition of ATP-utilizing and ATP-generating systems at concentrations below 0.8nmole/mg. of submitochondrial-particle protein. Aurovertin is a more potent inhibitor of ATP synthesis, giving 50% inhibition at 0.2nmole/mg. of protein. However, aurovertin is a less potent inhibitor of ATP-utilizing systems: the ATP-driven energy-linked nicotinamide nucleotide transhydrogenase is 50% inhibited at 3.0nmoles/mg. of protein and the ATP-driven reduction of NAD(+) by succinate is 50% inhibited at 0.95nmole/mg. of protein. 2. With EDTA-particles (prepared by subjecting mitochondria to ultrasonic radiation at pH9 in the presence of 2mm-EDTA) the maximum stimulation of the ATP-driven partial reactions is effected by similar concentrations of oligomycin A and dicylcohexylcarbodi-imide, but the latter is less effective. The stimulatory effects of suboptimum concentrations of dicyclohexylcarbodi-imide and oligomycin A are additive. Aurovertin does not stimulate these reactions or interfere with the stimulation by the other inhibitors. 3. Dicyclohexylcarbodi-imide and oligomycin A stimulate the aerobic energy-linked nicotinamide nucleotide transhydrogenase of EDTA-particles, but the optimum concentration is higher than that required for the ATP-driven partial reactions. Aurovertin has no effect on this reaction. 4. The site of action of dicyclohexylcarbodi-imide is in CF(0), the mitochondrial fraction that confers oligomycin sensitivity on F(1) mitochondrial adenosine triphosphatase.  相似文献   
154.
The purine and pyrimidine metabolism of Tetrahymena pyriformis   总被引:1,自引:0,他引:1  
The metabolism of purines and pyrimidines by the ciliated protozoan Tetrahymena was investigated with the use of enzymatic assays and radioactive tracers. A survey of enzymes involved in purine metabolism revealed that the activities of inosine and guanosine phosphorylase (purine nucleoside: orthophosphate ribosyltransferase, E.C. 2.4.2.1) were high, but adenosine phosphorylase activity could not be demonstrated. The apparent Km for guanosine in the system catalyzing its phosphorolysis was 4.1 ± 0.6 × 10?3 M. Pyrophosphorylase activities for IMP and GMP (GMP: pyrophosphate phosphoribosyltransferase, E.C. 2.4.2.8), AMP (AMP: pyrophosphate phosphoribosyltransferase, E.C. 2.4.2.7), and 6-mercaptopurine ribonucleotide were also found in this organism; but a number of purine and pyrimidine analogs did not function as substrates for these enzymes. The metabolism of labeled guanine and hypoxanthine by intact cells was consistent with the presence of the phosphorylases and pyrophosphorylases of purine metabolism found by enzymatic studies. Assays for adenosine kinase (ATP: adenosine 5'-phosphotransferase, E.C. 2.7.1.20) inosine kinase, guanosine kinase, xanthine oxidase (xanthine: O2 oxidoreductase, E.C. 1.2.3.2), and GMP reductase (reduced-NADP: GMP oxidoreductase [deaminating], E.C. 1.6.6.8) were all negative. In pyrimidine metabolism, cytidine-deoxycytidine deaminase (cytidine aminohydrolase, E.C. 3.5.4.5), thymidine phosphorylase (thymidine: orthophosphate ribosyltransferase, E.C. 2.4.2.4), and uridine-deoxyuridine phosphorylase (uridine: orthophosphate ribosyltransferase, E.C. 2.4.2.3) were active; but cytidine kinase, uridine kinase (ATP: uridine 5'-phosphotransferase, E.C. 2.7.1.48), and CMP pyrophosphorylase could not be demonstrated.  相似文献   
155.
Colicin E-resistant mutants were isolated in Escherichia coli K-12 which, although still apparently possessing the E receptor and adsorbing colicin, were nevertheless insensitive (refractory) to its effect. Eight phenotypic groups were obtained, but some mutants from three of these groups were all shown to map at gal, whereas a second refractory locus, giving resistance to E1 alone, mapped close to thy. It is suggested that the successful fixation of any of the three distinct colicins of group E may involve a dual role for the cell surface "receptor," the first for the binding of the protein and the second for the correct orientation of the bound molecule relative to the cytoplasmic membrane. The majority of the refractory mutants isolated may derive from changes in components concerned with the second of these receptor functions. Two groups of mutants, however, refractory to only E1 or E2, probably reflect changes in the intracellular transmission systems which specifically mediate the effects of these two colicins, the changes not allowing transmission through the cytoplasmic membrane to the respective targets of the colicins. The E1 adsorption site was shown to be distinct from that for E2 and E3, indicating an early separation of the colicin E transmission systems.  相似文献   
156.
157.
158.
159.
160.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号