首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11936篇
  免费   1035篇
  国内免费   210篇
  2023年   85篇
  2022年   205篇
  2021年   382篇
  2020年   244篇
  2019年   275篇
  2018年   305篇
  2017年   217篇
  2016年   388篇
  2015年   667篇
  2014年   706篇
  2013年   849篇
  2012年   1009篇
  2011年   935篇
  2010年   611篇
  2009年   555篇
  2008年   714篇
  2007年   644篇
  2006年   604篇
  2005年   487篇
  2004年   468篇
  2003年   438篇
  2002年   387篇
  2001年   156篇
  2000年   143篇
  1999年   162篇
  1998年   90篇
  1997年   88篇
  1996年   65篇
  1995年   71篇
  1994年   79篇
  1993年   72篇
  1992年   94篇
  1991年   91篇
  1990年   55篇
  1989年   69篇
  1988年   76篇
  1987年   62篇
  1986年   57篇
  1985年   60篇
  1984年   53篇
  1983年   38篇
  1982年   33篇
  1981年   26篇
  1979年   38篇
  1978年   29篇
  1977年   23篇
  1975年   24篇
  1974年   31篇
  1973年   30篇
  1971年   21篇
排序方式: 共有10000条查询结果,搜索用时 515 毫秒
991.
Disseminated malignancy is responsible for the vast majority of cancer-related deaths. During this process, circulating tumor cells (CTC) are generated, spread from the primary tumor, colonize distant organs and lead to overt metastatic disease. CTC are essential for establishing metastasis; however, they are not sufficient as this process is highly inefficient and most will fail to grow in target sites. Several CTC die during migration while others remain dormant for several years and very few grow into macrometastases. CTC have been well documented in the bloodstream of cancer patients; however, the clinical relevance of this detection is still the subject of controversies and their biology is poorly understood. Indeed, available markers fail to distinguish between subgroups of CTC, and several current methods lack sensitivity, specificity or reproducibility in CTC characterization and detection. The advent of more precise technologies is renewing the interest in CTC biology. We will review herein recent findings on CTC biology, on the role of host-tumor interactions in CTC shedding and implantation, available methods of CTC detection and future perspectives for the molecular characterization of the CTC subset(s) responsible for the development of metastasis. Ultimately, understanding CTC biology and host-tumor 'complementarities' will help define metastasis-related biomarkers providing formidable and tailored novel therapeutic targets.  相似文献   
992.
Silicon has gradually been recognized to be an essential trace element in the normal metabolism of higher animals, and the role of silicon in the human body has aroused interests in the biomedical community. In fact, the interactions between silicon-based devices and the human body such as biosensors and microelectromechanical systems (MEMS) often suffer from poor biocompatibility. In this work, hydrogen plasma immersion ion implantation (H-PIII) is conducted to improve the bioactivity or bone conductivity of silicon. In order to investigate the formation mechanism of bone-like apatite on the surface of the hydrogen implanted silicon wafer, two comparative experiments, hydrogenation and argon bombardment, are performed. The H-PIII sample exhibits an amorphous surface consisting of Si-H bonds. After immersion in simulated body fluids, a negatively charged surface containing the functional group ([triple bond]Si-O-) is produced and bone-like apatite is observed to nucleate and grow on the surface. The surface of the H-PIII silicon wafer favors the adhesion and growth of osteoblast cells and good cytocompatibility may be inferred.  相似文献   
993.
The N-terminal propeptide domains of several cathepsin L-like cysteine proteases have been shown to possess potent inhibitory activity. Here we report the first kinetic characterisation of the inhibition properties of the cathepsin V propeptide (CatV PP). Using a facile recombinant approach we demonstrate expression, purification and evaluation of the CatV PP. This propeptide was found to behave as a tight-binding inhibitor against CatV (K (i) 10.2 nm). It also functions as an inhibitor against other members of the CatL-like subclass (CatL, 9.8 nm; CatS, 10.7 nm; and CatK, 149 nm) and had no discernible effects upon the more distantly related CatB.  相似文献   
994.
Caspase-14 belongs to a conserved family of aspartate-specific proteinases. Its expression is restricted almost exclusively to the suprabasal layers of the epidermis and the hair follicles. Moreover, the proteolytic activation of caspase-14 is associated with stratum corneum formation, implicating caspase-14 in terminal keratinocyte differentiation and cornification. Here, we show that the skin of caspase-14-deficient mice was shiny and lichenified, indicating an altered stratum-corneum composition. Caspase-14-deficient epidermis contained significantly more alveolar keratohyalin F-granules, the profilaggrin stores. Accordingly, caspase-14-deficient epidermis is characterized by an altered profilaggrin processing pattern and we show that recombinant caspase-14 can directly cleave profilaggrin in vitro. Caspase-14-deficient epidermis is characterized by reduced skin-hydration levels and increased water loss. In view of the important role of filaggrin in the structure and moisturization of the skin, the knockout phenotype could be explained by an aberrant processing of filaggrin. Importantly, the skin of caspase-14-deficient mice was highly sensitive to the formation of cyclobutane pyrimidine dimers after UVB irradiation, leading to increased levels of UVB-induced apoptosis. Removal of the stratum corneum indicate that caspase-14 controls the UVB scavenging capacity of the stratum corneum.  相似文献   
995.
Troxacitabine is a cytotoxic deoxycytidine analogue with an unnatural L-configuration, which is activated by deoxycytidine kinase (dCK). The configuration is responsible for differences in the uptake and metabolism of troxacitabine compared to other deoxynucleoside analogues. The main drawback in the use of most nucleoside anticancer agents originates from their hydrophilic nature, which property requires a high and frequent dosage for an intravenous administration. To overcome this problem several troxacitabine prodrugs modified in the aminogroup with a linear aliphatic chain with a higher lipophilicity were developed. To determine whether these prodrugs have an advantage over Troxacitabine pancreatic cancer cell lines were exposed to Troxacitabine and the lipophilic prodrugs. The addition of linear aliphatic chains to troxacitabine increased sensitivity of pancreatic cancer cell lines to the drug > 100-fold, possibly due to a better uptake and retention of the drug.  相似文献   
996.
Guo K  Chu CC 《Biomacromolecules》2007,8(9):2851-2861
A new family of novel biodegradable poly(ether ester amide)s (PEEAs) consisting of three building blocks (L-phenylalanine, oligoethylene glycol, and aliphatic acid dichloride) were synthesized by solution polycondensation. Using N,N-dimethylacetamide as the solvent, these PEEA polymers were obtained with fairly good yields with reduced viscosity (eta(red)) ranging from 0.13 to 0.61 dL/g. The chemical structures of the PEEAs were confirmed by IR, NMR spectra, and elemental analysis. The PEEAs had Tg values lower than that of the saturated poly(ester amide)s (PEAs) of similar structures due to the incorporation of ether bonds in the backbones. An increase in the number of ether bonds in PEEA resulted in a lower Tg value. The solubility of the PEEA polymers in a wide range of common organic solvents was significantly improved when compared with unsaturated PEAs. The preliminary in vitro biodegradation behaviors of PEEA polymers were investigated in both pure PBS buffer and alpha-chymotrypsin solution of different concentrations. The polymers showed a significantly faster weight loss in an enzyme solution (alpha-chymotrypsin) but a very slow biodegradation rate in pure PBS buffer. The enzymatic hydrolysis rates of PEEAs (in terms of weight loss) were found to be much faster than those of saturated and unsaturated polyesteramides reported in previous studies. The zero-order-like biodegradation kinetics and molecular weight data also suggested surface erosion biodegradation mechanisms for these PEEAs.  相似文献   
997.
Alginate, or alginic acid, is an unbranched binary copolymer of (1-->4)-linked beta-D-mannuronic acid and alpha-L-guluronic acid. Alginate readily forms binding interactions with a variety of divalent metal ions, such as calcium. This binding has been used to cross-link bulk alginates for a wide variety of applications, particularly in areas of tissue engineering, medical devices, and wound-healing dressings. A new method is identified here for producing Ca2+-cross-linked thin films of sodium alginate, using an aerosolized spray of CaCl2 solution. These thin films exhibit structural color that varies with film thickness. It is demonstrated that this structural color is highly reproducible and can also be tuned to produce a wide range of colored films. The noted ability of alginates to bind metal ions is used in combination with the structural coloration afforded by the thin film structure as a basis for color-based optical sensing of metal ions in aqueous solutions. Changes in film thickness, refractive index, and reflectivity in response to metal ions have been measured and reported. For certain ions such as Cr(III) and Cr(VI), changes in film thickness are the predominate factors in shifting the reflected film color. In the case of other ions such as Pb(II), a change in film refractive index plays a significant role in the reflectance properties of films.  相似文献   
998.
999.
Liu  Ling  Chen  Zhen  Tian  Xiwei  Chu  Ju 《Biotechnology letters》2022,44(5):755-766
Biotechnology Letters - The target sorB gene, related to sorbicillinoid production, and the free expression element, AMA1, were used to verify the methodological approach in Acremonium chrysogenum....  相似文献   
1000.
Liu  Tao  Zhang  Yiying  Chu  Yunxia  Chen  Hairong  Ren  Li  Zhang  Di 《Plant Cell, Tissue and Organ Culture》2022,149(3):799-808

Dehydrins (DHNs) as the member of the late embryogenesis abundant protein family, play critical roles in seed dehydration protection and plant adaptation to multiple abiotic stresses. As an important method of germplasm preservation, cryopreservation is also an ideal research system to study compound stress. Oxidative stress, as the critical stress in cryopreservation, directly affects cell viability. Our previous in vitro tests indicated that ApY2SK2 DHN can effectively protect enzyme activity and almost double the survival rate of Arabidopsis thaliana seedlings after cryopreservation, but the in vivo protective effect of ApY2SK2 on cryopreservation have not yet been elucidated. In this study, ApY2SK2 type DHN was genetically transformed into embryogenic callus (EC) of Agapanthus praecox by overexpression (OE) and RNA interference (RNAi) techniques to evaluate the in vivo oxidative stress protective effect of DHNs during cryopreservation. The results showed that the cell viability had a completely opposite trend between OE and RNAi cell lines, and the cell relative death ratio of ApY2SK2-OE EC was significantly decreased 18.5% and ApY2SK2-RNAi cells was significantly increased 23.5% after cryopreservation. Overexpression ApY2SK2 increased non-enzymatic antioxidant (AsA and GSH) contents, antioxidant enzyme (POD and SOD) activities and up-regulated CAT, POD and GPX expression, while ApY2SK2-RNAi cells decreased CAT, FeSOD, POD and GPX expression during cryopreservation. These findings suggested that ApY2SK2 can affect ROS metabolism, alleviate H2O2 and OH·excessive generation, activate the antioxidant system, improve cellular REDOX balance and reduce membrane lipid peroxidation damage of plant cells during cryopreservation. DHNs can effectively improve cell stress tolerance and have great potential for in vivo or in vitro applications in plant cryopreservation.

  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号