首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6743篇
  免费   526篇
  国内免费   1篇
  2023年   42篇
  2022年   115篇
  2021年   192篇
  2020年   118篇
  2019年   132篇
  2018年   155篇
  2017年   124篇
  2016年   218篇
  2015年   394篇
  2014年   421篇
  2013年   494篇
  2012年   624篇
  2011年   559篇
  2010年   367篇
  2009年   353篇
  2008年   456篇
  2007年   416篇
  2006年   358篇
  2005年   300篇
  2004年   266篇
  2003年   288篇
  2002年   258篇
  2001年   50篇
  2000年   36篇
  1999年   65篇
  1998年   50篇
  1997年   46篇
  1996年   27篇
  1995年   35篇
  1994年   36篇
  1993年   31篇
  1992年   28篇
  1991年   17篇
  1990年   8篇
  1989年   12篇
  1988年   19篇
  1987年   7篇
  1986年   11篇
  1985年   5篇
  1984年   10篇
  1983年   7篇
  1982年   10篇
  1981年   6篇
  1979年   7篇
  1978年   6篇
  1977年   5篇
  1974年   9篇
  1973年   5篇
  1970年   5篇
  1969年   8篇
排序方式: 共有7270条查询结果,搜索用时 15 毫秒
871.
The extent to which seasonal plasticity in torpor displayed by one of the smallest Malagasy primates (Microcebus murinus) will help survival in the context of ongoing global change-induced chronic food shortage, is unknown. Body temperature (Tb) and locomotor activity were measured by telemetry in short- (SD, winter-acclimated) and long-days (LD, summer-acclimated) males (n = 24) during an experimental 35-day calorie restriction of 40 or 80%. Under SD exposure, regardless of calorie restriction intensity, mouse lemurs immediately increased torpor depth and duration by 4.6-fold, and showed greater phase-advanced entry into torpor (2.4-fold). Tb adjustments were efficient under 40% calorie restriction to maintain body mass, whereas they did not prevent a 0.71 +/- 0.11 g/day mass loss during 80% calorie restriction. The 40% food-deprived LD animals combined an early shallow deepening of torpor (1 degrees C) and a late 18% decrease in locomotor activity, resulting in a moderate 6% mass loss. After 15 days of 80% calorie restriction, LD animals exhibited a SD phenotype by increasing their torpor duration and phase-advancing the entry of torpor (16 min/day). Those adjustments had no impact on mass loss (0.93 +/- 0.07 g/day) as locomotor activity increased four-fold. Daily torpor allows M. murinus to face moderate food shortage whatever the photoperiod but poorly mitigates energy imbalance during severe food deprivation, especially under LD exposure. Although the behavioral thermoregulation role warrants further investigation in energy savings, M. murinus survival would be impaired during long-term food shortage in summer.  相似文献   
872.
873.
We report the synthesis, biochemical evaluation and rationalisation of the inhibitory activity of a number of azole-based compounds as inhibitors of the two components of the cytochrome P-450 enzyme 17alpha-hydroxylase/17,20-lyase (P450(17alpha)), i.e. 17alpha-hydroxylase (17alpha-OHase) and 17,20-lyase (lyase). The results suggest that the compounds synthesised are potent inhibitors, with 7-phenyl heptyl imidazole (11) (IC(50)=320 nM against 17alpha-OHase and IC(50)=100 nM against lyase); 1-[7-(4-fluorophenyl) heptyl] imidazole (14) (IC(50)=170 nM against 17alpha-OHase and IC(50)=57 nM against lyase); 1-[5-(4-bromophenyl) pentyl] imidazole (19) (IC(50)=500 nM against 17alpha-OHase and IC(50)=58 nM against lyase) being the most potent inhibitors within the current study, in comparison to ketoconazole (KTZ) (IC(50)=3.76 microM against 17alpha-OHase and IC(50)=1.66 microM against lyase). Furthermore, consideration of the inhibitory activity against the two components shows that all of the compounds tested are less potent towards the 17alpha-OHase in comparison to the lyase component, a desirable property in the development of novel inhibitors of P450(17alpha). From the modelling of these compounds onto the novel substrate heme complex (SHC) for the overall enzyme complex, the length of the compound, along with its ability to undergo interaction with the active site corresponding to the C(3) area of the steroidal backbone, are suggested to play a key role in determining the overall inhibitory activity.  相似文献   
874.
We report the synthesis and biochemical evaluation of a number of 4-hydroxyphenyl ketones as potential inhibitors of the enzyme 17beta-hydroxysteroid dehydrogenase (17beta-HSD). In particular, we evaluated compounds against the catalysis of the conversion of androstenedione (AD) to testosterone (T) [17beta-HSD type 3 (17beta-HSD3)], furthermore, in an effort to determine the specificity of our compounds, we evaluated the ability of the compounds to inhibit the catalysis of the conversion of estrone (E1) to estradiol (E2) [17beta-HSD type 1 (17beta-HSD1)] as well as the conversion of dehydroepiandrosterone (DHEA) to AD [by 3beta-hydroxysteroid dehydrogenase (3beta-HSD)]. The results of our study suggest that the synthesised compounds are, in general, able to inhibit 17beta-HSD3 whilst being weak inhibitors of 17beta-HSD1. Against 3beta-HSD, we discovered that all of the synthesised compounds were weak inhibitors (all were found to possess less than 50% inhibition at [I]=500 microM). More specifically, we discovered that 1-(4-hydroxy-phenyl)-nonan-1-one (15) was the most potent against 17beta-HSD3 (IC(50)=2.9 microM) whilst possessing poor inhibitory activity against 17beta-HSD1 ( approximately 36% inhibitory activity against this reaction at [I]=100 microM) and less than 10% inhibition for the conversion of DHEA to AD. We have therefore provided good lead compounds in the design and synthesis of novel non-steroidal inhibitors of 17beta-HSD3.  相似文献   
875.
876.
The photochemistry of several model plant-derived compounds has been studied in aqueous solution. In particular, the reactions of catechin as a model tannin and methoxy-substituted hydroxybenzhydrols as model lignin functionalities were investigated. Tannins and lignins constitute a significant portion of the humic substances in aquatic systems, which are themselves the main component of dissolved organic matter thought to be responsible for the absorption and attenuation of light in these environments. Catechin (1) was found to undergo a reversible photoisomerization reaction to give epicatechin (2). Such a reaction is an explicit example of a photon absorbing process that enables catechin (1) and its derivatives to act as natural sunscreens by attenuating light energy through non-destructive reactions. The methoxy-substituted hydroxybenzhydrols were found to undergo photosolvolysis reactions via efficient generation of quinone methide intermediates. The intermediate quinone methides were observed to be longer lived, and thus more stable, than previously studied hydroxybenzhydrol derivatives. The meta-hydroxybenzhydrol isomer (5) was found to undergo additional chemistry leading to the production of a ring-closed fluorene from the quinone methide intermediate.  相似文献   
877.
Objective: To demonstrate that human overeating is not just a passive response to salient environmental triggers and powerful physiological drives; it is also about making choices. The ventromedial prefrontal cortex has been strongly implicated in the neural circuitry necessary for making advantageous decisions when various options for action are available. Decision‐making deficits have been found in patients with ventromedial prefrontal cortex lesions and in those with substance dependence—impairments that reflect an inability to advantageously assess future consequences. That is, they choose immediate rewards in the face of future long‐term negative consequences. Research Methods and Procedures: We extended this research to the study of overeating and overweight, testing a regression model that predicted that poor decision making (as assessed by a validated computerized gambling task) and a tendency to overeat under stress would correlate with higher BMI in a group of healthy adult women (N = 41) representing a broad range of body weights. Results: We found statistically significant main effects for both independent variables in the predicted direction (p < 0.05; R2 = 0.35). Indeed, the decision‐making impairments across the 100 trials of the computer task were greater in those with high BMI than in previous studies with drug addicts. Discussion: Findings suggested that cortical and subcortical processes, which regulate one's ability to inhibit short‐term rewards when the long‐term consequences are deleterious, may also influence eating behaviors in a culture dominated by so many, and such varied, sources of palatable and calorically dense sources of energy.  相似文献   
878.
Over the past decade, numerous nonviral cationic vectors have been synthesized. They share a high density of positive charges and efficiency for gene transfer in vitro. However, their positively charged surface causes instability in body fluids and cytotoxicity, thereby limiting their efficacy in vivo. Therefore, there is a need for developing alternative molecular structures. We have examined tetrabranched amphiphilic block copolymers consisting of four polyethyleneoxide/polypropyleneoxide blocks centered on an ethylenediamine moiety. Cryo-electron microscopy, ethidium bromide fluorescence and light and X-ray scattering experiments performed on vector–DNA complexes showed that the dense core of the nanosphere consisted of condensed DNA interacting with poloxamine molecules through electrostatic, hydrogen bonding and hydrophobic interactions, with DNA molecules also being exposed at the surface. The supramolecular organization of block copolymer/DNA nanospheres induced the formation of negatively charged particles. These particles were stable in a solution that had a physiological ionic composition and were resistant to decomplexation by heparin. The new nanostructured material, the structure of which clearly contrasted with that of lipoplexes and polyplexes, efficiently transferred reporter and therapeutic genes in skeletal and heart muscle in vivo. Negatively charged supramolecular assemblies hold promise as therapeutic gene carriers for skeletal and heart muscle-related diseases and expression of therapeutic proteins for local or systemic uses.  相似文献   
879.
880.
Aquaporins and aquaglyceroporins mediate the transport of water and solutes across biological membranes. Saccharomyces cerevisiae Fps1 is an aquaglyceroporin that mediates controlled glycerol export during osmoregulation. The transport function of Fps1 is rapidly regulated by osmotic changes in an apparently unique way and distinct regions within the long N- and C-terminal extensions are needed for this regulation. In order to learn more about the mechanisms that control Fps1 we have set up a genetic screen for hyperactive Fps1 and isolated mutations in 14 distinct residues, all facing the inside of the cell. Five of the residues lie within the previously characterized N-terminal regulatory domain and two mutations are located within the approach to the first transmembrane domain. Three mutations cause truncation of the C-terminus, confirming previous studies on the importance of this region for channel control. Furthermore, the novel mutations identify two conserved residues in the channel-forming B-loop as critical for channel control. Structural modelling-based rationalization of the observed mutations supports the notion that the N-terminal regulatory domain and the B-loop could interact in channel control. Our findings provide a framework for further genetic and structural analysis to better understand the mechanism that controls Fps1 function by osmotic changes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号