首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5263篇
  免费   410篇
  国内免费   1篇
  2023年   49篇
  2022年   83篇
  2021年   173篇
  2020年   113篇
  2019年   114篇
  2018年   195篇
  2017年   139篇
  2016年   242篇
  2015年   322篇
  2014年   313篇
  2013年   445篇
  2012年   485篇
  2011年   386篇
  2010年   246篇
  2009年   196篇
  2008年   265篇
  2007年   274篇
  2006年   222篇
  2005年   188篇
  2004年   172篇
  2003年   165篇
  2002年   146篇
  2001年   67篇
  2000年   47篇
  1999年   48篇
  1998年   35篇
  1997年   19篇
  1996年   19篇
  1995年   26篇
  1994年   25篇
  1993年   24篇
  1992年   42篇
  1991年   34篇
  1990年   33篇
  1989年   31篇
  1988年   21篇
  1987年   23篇
  1986年   20篇
  1985年   22篇
  1984年   25篇
  1983年   22篇
  1982年   14篇
  1981年   11篇
  1980年   8篇
  1979年   13篇
  1978年   15篇
  1977年   10篇
  1976年   15篇
  1975年   13篇
  1973年   9篇
排序方式: 共有5674条查询结果,搜索用时 31 毫秒
141.
142.
Although recent preclinical and clinical studies have demonstrated that recombinant human relaxin (rhRLX) may have important therapeutic potential in acute heart failure and chronic kidney diseases, the effects of acute rhRLX administration against renal ischaemia/reperfusion (I/R) injury have never been investigated. Using a rat model of 1‐hr bilateral renal artery occlusion followed by 6‐hr reperfusion, we investigated the effects of rhRLX (5 μg/Kg i.v.) given both at the beginning and after 3 hrs of reperfusion. Acute rhRLX administration attenuated the functional renal injury (increase in serum urea and creatinine), glomerular dysfunction (decrease in creatinine clearance) and tubular dysfunction (increase in urinary excretion of N‐acetyl‐β‐glucosaminidase) evoked by renal I/R. These beneficial effects were accompanied by a significant reduction in local lipid peroxidation, free radical‐induced DNA damage and increase in the expression/activity of the endogenous antioxidant enzymes Mn‐ and CuZn‐superoxide dismutases (SOD). Furthermore, rhRLX administration attenuated the increase in leucocyte activation, as suggested by inhibition of myeloperoxidase activity, intercellular‐adhesion‐molecule‐1 expression, interleukin (IL)‐1β, IL‐18 and tumour necrosis factor‐α production as well as increase in IL‐10 production. Interestingly, the reduced oxidative stress status and neutrophil activation here reported were associated with rhRLX‐induced activation of endothelial nitric oxide synthase and up‐regulation of inducible nitric oxide synthase, possibly secondary to activation of Akt and the extracellular signal‐regulated protein kinase (ERK) 1/2, respectively. Thus, we report herein that rhRLX protects the kidney against I/R injury by a mechanism that involves changes in nitric oxide signalling pathway.  相似文献   
143.
Advances in bioanalytical techniques have become crucial for both basic research and medical practice. One example, bioluminescence imaging (BLI), is based on the application of natural reactants with light‐emitting capabilities (photoproteins and luciferases) isolated from a widespread group of organisms. The main challenges in cardiac regeneration remain unresolved, but a vast number of studies have harnessed BLI with the discovery of aequorin and green fluorescent proteins. First described in the luminous hydromedusan Aequorea victoria in the early 1960s, bioluminescent proteins have greatly contributed to the design and initiation of ongoing cell‐based clinical trials on cardiovascular diseases. In conjunction with advances in reporter gene technology, BLI provides valuable information about the location and functional status of regenerative cells implanted into numerous animal models of disease. The purpose of this review was to present the great potential of BLI, among other existing imaging modalities, to refine effectiveness and underlying mechanisms of cardiac cell therapy. We recount the first discovery of natural primary compounds with light‐emitting capabilities, and follow their applications to bioanalysis. We also illustrate insights and perspectives on BLI to illuminate current efforts in cardiac regeneration, where the future is bright.  相似文献   
144.
Beckwith-Wiedemann syndrome (BWS) is a rare disorder characterized by overgrowth and predisposition to embryonal tumors. BWS is caused by various epigenetic and/or genetic alterations that dysregulate the imprinted genes on chromosome region 11p15.5. Molecular analysis is required to reinforce the clinical diagnosis of BWS and to identify BWS patients with cancer susceptibility. This is particularly crucial prenatally because most signs of BWS cannot be recognized in utero. We established a reliable molecular assay by pyrosequencing to quantitatively evaluate the methylation profiles of ICR1 and ICR2. We explored epigenotype-phenotype correlations in 19 patients that fulfilled the clinical diagnostic criteria for BWS, 22 patients with suspected BWS, and three fetuses with omphalocele. Abnormal methylation was observed in one prenatal case and 19 postnatal cases, including seven suspected BWS. Seven cases showed ICR1 hypermethylation, five cases showed ICR2 hypomethylation, and eight cases showed abnormal methylation of ICR1 and ICR2 indicating paternal uniparental disomy (UPD). More cases of ICR1 alterations and UPD were found than expected. This is likely due to the sensitivity of this approach, which can detect slight deviations in methylation from normal levels. There was a significant correlation (p < 0.001) between the percentage of ICR1 methylation and BWS features: severe hypermethylation (range: 75–86%) was associated with macroglossia, macrosomia, and visceromegaly, whereas mild hypermethylation (range: 55–59%) was associated with umbilical hernia and diastasis recti. Evaluation of ICR1 and ICR2 methylation by pyrosequencing in BWS can improve epigenotype-phenotype correlations, detection of methylation alterations in suspected cases, and identification of UPD.  相似文献   
145.
Previously considered as toxic by-products of aerobic metabolism, reactive oxygen species (ROS) are emerging as essential signaling molecules in eukaryotes. Recent evidence showed that maintenance of ROS homeostasis during female gametophyte development is crucial for embryo sac patterning and fertilization. Although ROS are exclusively detected in the central cell of mature embryo sacs, the study of mutants deficient in ROS homeostasis suggests that controlled oxidative bursts might take place earlier during gametophyte development. Also, a ROS burst that depends on pollination takes place inside the embryo sac. This oxidative response might be required for pollen tube growth arrest and for sperm cell release. In this mini-review, we will focus on new insights into the role of ROS during female gametophyte development and fertilization. Special focus will be made on the mitochondrial Mn-Superoxide dismutase (MSD1), which has been recently reported to be essential for maintaining ROS homeostasis during embryo sac formation.  相似文献   
146.
Mycobacterium tuberculosis (Mtb) is thought to preferentially rely on fatty acid metabolism to both establish and maintain chronic infections. Its metabolic network, however, allows efficient co-catabolism of multiple carbon substrates. To gain insight into the importance of carbohydrate substrates for Mtb pathogenesis we evaluated the role of glucose phosphorylation, the first reaction in glycolysis. We discovered that Mtb expresses two functional glucokinases. Mtb required the polyphosphate glucokinase PPGK for normal growth on glucose, while its second glucokinase GLKA was dispensable. 13C-based metabolomic profiling revealed that both enzymes are capable of incorporating glucose into Mtb''s central carbon metabolism, with PPGK serving as dominant glucokinase in wild type (wt) Mtb. When both glucokinase genes, ppgK and glkA, were deleted from its genome, Mtb was unable to use external glucose as substrate for growth or metabolism. Characterization of the glucokinase mutants in mouse infections demonstrated that glucose phosphorylation is dispensable for establishing infection in mice. Surprisingly, however, the glucokinase double mutant failed to persist normally in lungs, which suggests that Mtb has access to glucose in vivo and relies on glucose phosphorylation to survive during chronic mouse infections.  相似文献   
147.
148.
In this study, we examine the dietary protein to carbohydrate ratio (P:C) on the mitochondrial functions of two Drosophila melanogaster mtDNA haplotypes. We investigated multiple physiological parameters on flies fed with either 1:12 P:C or 1:3 P:C diets. Our results provide experimental evidence that a specific haplotype has a reduction of complex I activity when the flies are fed with the 1:12 P:C diet. This study is of particular importance to understand the influence of diet on mitochondrial evolution in invasive and broadly distributed species including humans.  相似文献   
149.
NDUFV1 mutations have been related to encephalopathic phenotypes due to mitochondrial energy metabolism disturbances. In this study, we report two siblings affected by a diffuse leukodystrophy, who carry the NDUFV1 c.1156C>T (p.Arg386Cys) missense mutation and a novel 42-bp deletion. Bioinformatic and molecular analysis indicated that this deletion lead to the synthesis of mRNA molecules carrying a premature stop codon, which might be degraded by the nonsense-mediated decay system. Our results add information on the molecular basis and the phenotypic features of mitochondrial disease caused by NDUFV1 mutations.  相似文献   
150.
Malignant pleural mesothelioma (MPM) is a poor prognosis disease lacking adequate therapy. We have previously shown that ascorbic acid administration is toxic to MPM cells. Here we evaluated a new combined therapy consisting of ascorbate/epigallocatechin-3-gallate/gemcitabine mixture (called AND, for Active Nutrients/Drug). In vitro effects of AND therapy on various MPM cell lines revealed a synergistic cytotoxic mechanism. In vivo experiments on a xenograft mouse model for MPM, obtained by REN cells injection in immunocompromised mice, showed that AND strongly reduced the size of primary tumor as well as the number and size of metastases, and prevented abdominal hemorrhage. Kaplan Meier curves and the log-rank test indicated a marked increase in the survival of AND-treated animals. Histochemical analysis of dissected tumors showed that AND induced a shift from cell proliferation to apoptosis in cancer cells. Lysates of tumors from AND-treated mice, analyzed with an antibody array, revealed decreased TIMP-1 and -2 expressions and no effects on angiogenesis regulating factors. Multiplex analysis for signaling protein phosphorylation exhibited inactivation of cell proliferation pathways. The complex of data showed that the AND treatment is synergistic in vitro on MPM cells, and blocks in vivo tumor progression and metastasization in REN-based xenografts. Hence, the AND combination is proposed as a new treatment for MPM.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号