首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   481篇
  免费   57篇
  538篇
  2024年   1篇
  2023年   9篇
  2022年   7篇
  2021年   12篇
  2020年   15篇
  2019年   5篇
  2018年   21篇
  2017年   18篇
  2016年   28篇
  2015年   45篇
  2014年   37篇
  2013年   44篇
  2012年   76篇
  2011年   51篇
  2010年   31篇
  2009年   20篇
  2008年   24篇
  2007年   32篇
  2006年   18篇
  2005年   14篇
  2004年   9篇
  2003年   8篇
  2002年   5篇
  2001年   2篇
  1998年   1篇
  1997年   2篇
  1996年   2篇
  1971年   1篇
排序方式: 共有538条查询结果,搜索用时 0 毫秒
101.
The compaction of DNA by the HU protein from Thermotoga maritima (TmHU) is analysed on a single-molecule level by the usage of an optical tweezers-assisted force clamp. The condensation reaction is investigated at forces between 2 and 40 pN applied to the ends of the DNA as well as in dependence on the TmHU concentration. At 2 and 5 pN, the DNA compaction down to 30% of the initial end-to-end distance takes place in two regimes. Increasing the force changes the progression of the reaction until almost nothing is observed at 40 pN. Based on the results of steered molecular dynamics simulations, the first regime of the length reduction is assigned to a primary level of DNA compaction by TmHU. The second one is supposed to correspond to the formation of higher levels of structural organisation. These findings are supported by results obtained by atomic force microscopy.  相似文献   
102.
Mycobacterium tuberculosis is an extremely well adapted intracellular human pathogen that is exposed to multiple DNA damaging chemical assaults originating from the host defence mechanisms. As a consequence, this bacterium is thought to possess highly efficient DNA repair machineries, the nucleotide excision repair (NER) system amongst these. Although NER is of central importance to DNA repair in M. tuberculosis, our understanding of the processes in this species is limited. The conserved UvrABC endonuclease represents the multi-enzymatic core in bacterial NER, where the UvrA ATPase provides the DNA lesion-sensing function. The herein reported genetic analysis demonstrates that M. tuberculosis UvrA is important for the repair of nitrosative and oxidative DNA damage. Moreover, our biochemical and structural characterization of recombinant M. tuberculosis UvrA contributes new insights into its mechanism of action. In particular, the structural investigation reveals an unprecedented conformation of the UvrB-binding domain that we propose to be of functional relevance. Taken together, our data suggest UvrA as a potential target for the development of novel anti-tubercular agents and provide a biochemical framework for the identification of small-molecule inhibitors interfering with the NER activity in M. tuberculosis.  相似文献   
103.
The sclerotia of the fungus Claviceps sp. are still a challenge for the milling industry. Ergot sclerotia are a constant contamination of the rye crop and have to be removed by modern milling technologies. Changing sizes and coloration of the sclerotia make it difficult to separate them from the grain. Ergot sclerotia are a problem when cleaning is insufficient and non-separated specimens or sclerotia fragments get into the milling stream and thus ergot alkaloids are distributed into the different cereal fractions. In model milling experiments, the residues of ergot in rye flour and the distribution of ergot into different milling fractions were investigated. Rye grains were mixed with whole ergot sclerotia and in another experiment with ergot powder and cleaned afterwards before milling. The ergot alkaloids ergometrine, ergosine, ergotamine, ergocornine, ergocryptine, ergocristineand their related isomeric forms (-inine-forms), and additionally ricinoleic acid as a characteristic component of ergot, were quantified in the different milling fractions. From the first experiment, it can be shown that after harvesting even simple contact of sclerotia with bulk grains during ordinary handling or movement of bulk grain in the granary is sufficient to contaminate all the healthy or sound rye grains with ergot alkaloids. Thereby, the amount of ergot residue correlates with the amount of peripheral layers of rye grains in the flour. In an additional experiment without sclerotia specimens, bulk rye grains were loaded with powder of sclerotia. After subsequent cleaning, aconcentration of ergot alkaloids was detected, which was tenfold higher than the ergot alkaloidconcentration of the experiment with intact ergot sclerotia.  相似文献   
104.
Cochlear inner hair cells (IHCs) develop from pre‐sensory pacemaker to sound transducer. Here, we report that this involves changes in structure and function of the ribbon synapses between IHCs and spiral ganglion neurons (SGNs) around hearing onset in mice. As synapses matured they changed from holding several small presynaptic active zones (AZs) and apposed postsynaptic densities (PSDs) to one large AZ/PSD complex per SGN bouton. After the onset of hearing (i) IHCs had fewer and larger ribbons; (ii) CaV1.3 channels formed stripe‐like clusters rather than the smaller and round clusters at immature AZs; (iii) extrasynaptic CaV1.3‐channels were selectively reduced, (iv) the intrinsic Ca2+ dependence of fast exocytosis probed by Ca2+ uncaging remained unchanged but (v) the apparent Ca2+ dependence of exocytosis linearized, when assessed by progressive dihydropyridine block of Ca2+ influx. Biophysical modeling of exocytosis at mature and immature AZ topographies suggests that Ca2+ influx through an individual channel dominates the [Ca2+] driving exocytosis at each mature release site. We conclude that IHC synapses undergo major developmental refinements, resulting in tighter spatial coupling between Ca2+ influx and exocytosis.  相似文献   
105.
Nectar robbery is usually thought to impact negatively on the reproductive success of plants, but also neutral or even positive effects have been reported. Very few studies have investigated the effects of nectar robbing on the behaviour of legitimate pollinators so far. Such behavioural changes may lead to the reduction of geitonogamy or to increased pollen movement. We simulated nectar robbing in experimental sites as well as in natural populations of Aconitum napellus ssp. lusitanicum, a rare plant pollinated by long-tongued bumblebees. In an experimental setup, we removed the nectaries of 40 % of the flowers, which is similar to rates of robbing observed in wild populations. Patches of plants with experimentally robbed flowers were compared with control patches containing plants with untreated flowers. We observed pollinator behaviour, mimicked male reproductive success (pollen dispersal) using fluorescent dye, and measured female reproductive success (seed set). The main legitimate visitors were bumblebees while honeybees were often observed robbing nectar. They did so by “base working”, i.e. sliding between tepals. Bumblebees tended to visit fewer flowers per plant and spent less time per single flower when these had been experimentally robbed. This change in behaviour consequently increased the proportion of flowers visited by bumblebees in patches with robbed flowers. Fluorescent dye mimicking pollen flow was dispersed larger distances after pollinators had visited patches with robbed flowers compared to control patches. Average seed set per plant was not affected by nectar robbing. Our results demonstrated that A. napellus does not suffer from nectar robbery but may rather benefit via improved pollen dispersal and thus, male reproductive success. Knowledge on such combined effects of behavioural changes of pollinators due to nectar robbery is important to understand the evolutionary significance of exploiters of such mutualistic relationships between plants and their pollinators.  相似文献   
106.
107.
108.
The steady improvement of mammalian cell factories for the production of biopharmaceuticals is a key challenge for the biotechnology community. Recently, small regulatory microRNAs (miRNAs) were identified as novel targets for optimizing Chinese hamster ovary (CHO) production cells as they do not add any translational burden to the cell while being capable of regulating entire physiological pathways. The aim of the present study was to elucidate miRNA function in a recombinant CHO‐SEAP cell line by means of a genome‐wide high‐content miRNA screen. This screen revealed that out of the 1, 139 miRNAs examined, 21% of the miRNAs enhanced cell‐specific SEAP productivity mainly resulting in elevated volumetric yields, while cell proliferation was accelerated by 5% of the miRNAs. Conversely, cell death was diminished by 13% (apoptosis) or 4% (necrosis) of all transfected miRNAs. Besides these large number of identified target miRNAs, the outcome of our studies suggest that the entire miR‐30 family substantially improves bioprocess performance of CHO cells. Stable miR‐30 over expressing cells outperformed parental cells by increasing SEAP productivity or maximum cell density of approximately twofold. Our results highlight the application of miRNAs as powerful tools for CHO cell engineering, identified the miR‐30 family as a critical component of cell proliferation, and support the notion that miRNAs are powerful determinants of cell viability.  相似文献   
109.
A great number of functional imaging studies contributed to developing a cerebral network model illustrating the processing of prosody in the brain. According to this model, the processing of prosodic emotional signals is divided into three main steps, each related to different brain areas. The present study sought to evaluate parts of the aforementioned model by using low-frequency repetitive transcranial magnetic stimulation (rTMS) over two important brain regions identified by the model: the superior temporal cortex (Experiment 1) and the inferior frontal cortex (Experiment 2). The aim of both experiments was to reduce cortical activity in the respective brain areas and evaluate whether these reductions lead to measurable behavioral effects during prosody processing. However, results obtained in this study revealed no rTMS effects on the acquired behavioral data. Possible explanations for these findings are discussed in the paper.  相似文献   
110.
The evolution of cumulative adaptive culture has received widespread interest in recent years, especially the factors promoting its occurrence. Current evolutionary models suggest that an increase in population size may lead to an increase in cultural complexity via a higher rate of cultural transmission and innovation. However, relatively little attention has been paid to the role of natural selection in the evolution of cultural complexity. Here we use an agent-based simulation model to demonstrate that high selection pressure in the form of resource pressure promotes the accumulation of adaptive culture in spite of small population sizes and high innovation costs. We argue that the interaction of demography and selection is important, and that neither can be considered in isolation. We predict that an increase in cultural complexity is most likely to occur under conditions of population pressure relative to resource availability. Our model may help to explain why culture change can occur without major environmental change. We suggest that understanding the interaction between shifting selective pressures and demography is essential for explaining the evolution of cultural complexity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号