首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2199篇
  免费   251篇
  2023年   14篇
  2022年   15篇
  2021年   33篇
  2020年   31篇
  2019年   19篇
  2018年   50篇
  2017年   34篇
  2016年   57篇
  2015年   99篇
  2014年   106篇
  2013年   116篇
  2012年   174篇
  2011年   141篇
  2010年   95篇
  2009年   69篇
  2008年   113篇
  2007年   109篇
  2006年   84篇
  2005年   72篇
  2004年   76篇
  2003年   69篇
  2002年   64篇
  2001年   73篇
  2000年   52篇
  1999年   42篇
  1998年   32篇
  1997年   27篇
  1996年   16篇
  1995年   18篇
  1994年   19篇
  1993年   19篇
  1992年   27篇
  1991年   21篇
  1990年   21篇
  1989年   17篇
  1988年   22篇
  1987年   26篇
  1986年   18篇
  1985年   18篇
  1984年   21篇
  1983年   22篇
  1982年   17篇
  1981年   20篇
  1979年   16篇
  1975年   17篇
  1974年   14篇
  1973年   17篇
  1971年   21篇
  1969年   22篇
  1967年   12篇
排序方式: 共有2450条查询结果,搜索用时 31 毫秒
961.
We previously defined a cholesterol recognition/interaction amino acid consensus sequence [CRAC: L/V-X (1-5)-Y-X (1-5)-R/K] in the carboxyl terminus of the peripheral-type benzodiazepine receptor (PBR), a high-affinity drug and cholesterol-binding protein present in the outer mitochondrial membrane protein. This protein is involved in the regulation of cholesterol transport into the mitochondria, the rate-determining step in steroid biosynthesis. Reconstituted wild-type recombinant PBR into proteoliposomes demonstrated high-affinity 2-chlorophenyl)-N-methyl-N-(1-methyl-propyl)-3-isoquinolinecarboxamide and cholesterol binding. In the present work, we functionally and structurally characterized this CRAC motif using reconstituted recombinant PBR and nuclear magnetic resonance. Deletion of the C-terminal domain of PBR and mutation of the highly conserved among all PBR amino acid sequences Y152 of the CRAC domain resulted in loss of the ability of mutant recPBR to bind cholesterol. Nuclear magnetic resonance analysis of a PBR C-terminal peptide (144-169) containing the CRAC domain indicated a helical conformation for the L144-S159 fragment. As a result of the side-chain distribution, a groove that could fit a cholesterol molecule is delineated, on one hand, by Y152, T148, and L144, and, on the other hand, by Y153, M149, and A145. The aromatic rings of Y152 and Y153 assigned as essential residues for cholesterol binding constitute the gate of the groove. Furthermore, the side chain of R156 may cap the groove by interacting with the sterol hydroxyl group. These results provide structural and functional evidence supporting the finding that the CRAC domain in the cytosolic carboxyl-terminal domain of PBR might be responsible for the uptake and translocation of cholesterol into the mitochondria.  相似文献   
962.
Neumann E  George E 《Mycorrhiza》2005,15(7):533-537
This study presents a novel method for the extraction and quantification of extraradical mycelium (ERM) of arbuscular mycorrhizal fungi (AMF) from a substrate that simulates soil better than previously used artificial growth media. Fungal compartments were constructed from small net pots with a latticed wall and filled with a mixture of glass beads and 40 m wet sieved soil. The net pots were surrounded by a 30-m mesh membrane through which hyphae but not roots could grow. They were inserted into soil where a Glomus intraradices (BEG 110) colonized potato plant was growing. The ERM that had grown out from roots through the membrane was successfully collected and quantified after harvest by washing out the soil/glass bead mixture through a sieve with a mesh width of 40 m. Concentrations of P, Zn, Cu and Mn in the AMF ERM were analysed.  相似文献   
963.
Heparan sulphate proteoglycans (HSPGs) are known to be crucial for signalling by the secreted Wnt, Hedgehog, Bmp and Fgf proteins during invertebrate development. However, relatively little is known about their effect on developmental signalling in vertebrates. Here, we report the analysis of daedalus, a novel zebrafish pectoral fin mutant. Positional cloning identified fgf10 as the gene disrupted in daedalus. We find that fgf10 mutants strongly resemble zebrafish ext2 and extl3 mutants, which encode glycosyltransferases required for heparan sulphate biosynthesis. This suggests that HSPGs are crucial for Fgf10 signalling during limb development. Consistent with this proposal, we observe a strong genetic interaction between fgf10 and extl3 mutants. Furthermore, application of Fgf10 protein can rescue target gene activation in fgf10, but not in ext2 or extl3 mutants. By contrast, application of Fgf4 protein can activate target genes in both ext2 and extl3 mutants, indicating that ext2 and extl3 are differentially required for Fgf10, but not Fgf4, signalling during limb development. This reveals an unexpected specificity of HSPGs in regulating distinct vertebrate Fgfs.  相似文献   
964.
The centromeric retrotransposon (CR) family in the grass species is one of few Ty3-gypsy groups of retroelements that preferentially transpose into highly specialized chromosomal domains. It has been demonstrated in both rice and maize that CRR (CR of rice) and CRM (CR of maize) elements are intermingled with centromeric satellite DNA and are highly concentrated within cytologically defined centromeres. We collected all of the CRR elements from rice chromosomes 1, 4, 8, and 10 that have been sequenced to high quality. Phylogenetic analysis revealed that the CRR elements are structurally diverged into four subfamilies, including two autonomous subfamilies (CRR1 and CRR2) and two nonautonomous subfamilies (noaCRR1 and noaCRR2). The CRR1/CRR2 elements contain all characteristic protein domains required for retrotransposition. In contrast, the noaCRR elements have different structures, containing only a gag or gag-pro domain or no open reading frames. The CRR and noaCRR elements share substantial sequence similarity in regions required for DNA replication and for recognition by integrase during retrotransposition. These data, coupled with the presence of young noaCRR elements in the rice genome and similar chromosomal distribution patterns between noaCRR1 and CRR1/CRR2 elements, suggest that the noaCRR elements were likely mobilized through the retrotransposition machinery from the autonomous CRR elements. Mechanisms of the targeting specificity of the CRR elements, as well as their role in centromere function, are discussed.  相似文献   
965.
Iron (Fe) is necessary for all living cells, but its bioavailability is often limited. Fe deficiency limits agriculture in many areas and affects over a billion human beings worldwide. In mammals, NRAMP2/DMT1/DCT1 was identified as a major pathway for Fe acquisition and recycling. In plants, AtNRAMP3 and AtNRAMP4 are induced under Fe deficiency. The similitude of AtNRAMP3 and AtNRAMP4 expression patterns and their common targeting to the vacuole, together with the lack of obvious phenotype in nramp3-1 and nramp4-1 single knockout mutants, suggested a functional redundancy. Indeed, the germination of nramp3 nramp4 double mutants is arrested under low Fe nutrition and fully rescued by high Fe supply. Mutant seeds have wild type Fe content, but fail to retrieve Fe from the vacuolar globoids. Our work thus identifies for the first time the vacuole as an essential compartment for Fe storage in seeds. Our data indicate that mobilization of vacuolar Fe stores by AtNRAMP3 and AtNRAMP4 is crucial to support Arabidopsis early development until efficient systems for Fe acquisition from the soil take over.  相似文献   
966.
Electric fields, similar in the order of magnitude of the natural membrane fields of cellular lipid/protein membranes, and chemical relaxation spectrometry can be used as tools to quantify the rigidifying effect of cholesterol in membranes. Small unilamellar vesicles of radius a=50+/-3 nm, prepared form phosphatidylcholine, phosphatidylserine and phosphatidyl-glycerol in the molar ratio 1:1:1 and containing the optical lipid probe molecule 2-(3-diphenyl-hexatrienyl) propanoyl)-1-palmitoyl-sn-glycerol-3-phosphocholine (beta-DPH pPC), serve as examples for curved lipid membranes. The data of electrooptical turbidity and absorbance relaxations at the wavelength lambda=365 nm are analysed in terms of membrane bending rigidity kappa and membrane stretching modulus K. Both kappa and K increase with increasing mole fraction x of cholesterol up to x=0.5. The cholesterol induced denser packing of the lipids reduces the extent of both membrane electroporation (ME) and electroelongation of the vesicles. Further on, cholesterol in the lipid phase and sucrose in the aqueous suspension reduce the extent of membrane undulation and electro-stretching.  相似文献   
967.
Alkylphosphocholines (APCs) represent a new and very encouraging class of antitumour agents that have also been shown to induce apoptosis in tumour cells, but their exact mode of action has still not been elucidated. The APC compound presented here, S-1-O-phosphocholine-2- N-acetyl-octadecane (S-NC-2) induces apoptosis in a variety of cancer cells. To define the molecular requirements for S-NC-2-induced apoptosis, activation of caspase-8 and -3 and the cleavage of death substrates, such as poly(ADP-ribose) polymerase (PARP), were investigated in Jurkat, BJAB, SKW6.4 and K562 cells. The signalling pathway seems to be initiated at the death receptor level. Cells that are defective in Fas-receptor signalling (e.g., FADDdn BJAB), as well as cells lacking the Fas receptor (K562), were resistant to S-NC-2 treatment. Furthermore, the treatment of Jurkat cells with S-NC-2 resulted in the clustering of death receptor molecules and co-localisation of the Fas receptor with caveolin, a marker for lipid rafts. In addition, the involvement of mitochondria was detected, since S-NC-2 induces the breakdown of the mitochondrial membrane potential. Overexpression of the anti-apoptotic protein Bcl-2 prevented the loss of delta psi(m) in type II (Jurkat) but not in type I cells (SKW6.4). Moreover, cleavage of Bid was found, which points to a possible linkage between the receptor-dependent and the mitochondrial pathways.  相似文献   
968.
The production of biodegradable polymers in transgenic plants in order to replace petrochemical compounds is an important challenge for plant biotechnology. Polyaspartate, a biodegradable substitute for polycarboxylates, is the backbone of the cyanobacterial storage material cyanophycin. Cyanophycin, a copolymer of l-aspartic acid and l-arginine, is produced via non-ribosomal polypeptide biosynthesis by the enzyme cyanophycin synthetase. A gene from Thermosynechococcus elongatus BP-1 encoding cyanophycin synthetase has been expressed constitutively in tobacco and potato. The presence of the transgene-encoded messenger RNA (mRNA) correlated with changes in leaf morphology and decelerated growth. Such transgenic plants were found to produce up to 1.1% dry weight of a polymer with cyanophycin-like properties. Aggregated material, able to bind a specific cyanophycin antibody, was detected in the cytoplasm and the nucleus of the transgenic plants.  相似文献   
969.
Skeletal muscle functions regulated by NO are now firmly established. However, the literature on the compartmentalization of NO signaling in myocytes is highly controversial. To address this issue, we examined localization of enzymes engaged in L-arginine-NO-cGMP signaling in the rat quadriceps muscle. Employing immunocytochemical labeling complemented with tyramide signal amplification and electron microscopy, we found NO synthase expressed not only in the sarcolemma, but also along contractile fibers, in the sarcoplasmic reticulum and mitochondria. The expression pattern of NO synthase in myocytes showed striking parallels with the enzymes engaged in L-arginine-NO-cGMP signaling (arginase, phosphodiesterase, and soluble guanylyl cyclase). Our findings are indicative of an autocrine fashion of NO signaling in skeletal muscles at both cellular and subcellular levels, and challenge the notion that the NO generation is restricted to the sarcolemma.  相似文献   
970.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号