首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2028篇
  免费   153篇
  国内免费   1篇
  2022年   6篇
  2021年   37篇
  2020年   18篇
  2019年   26篇
  2018年   46篇
  2017年   25篇
  2016年   62篇
  2015年   103篇
  2014年   92篇
  2013年   120篇
  2012年   206篇
  2011年   146篇
  2010年   107篇
  2009年   109篇
  2008年   139篇
  2007年   128篇
  2006年   107篇
  2005年   103篇
  2004年   103篇
  2003年   105篇
  2002年   92篇
  2001年   17篇
  2000年   11篇
  1999年   19篇
  1998年   23篇
  1997年   15篇
  1996年   10篇
  1995年   10篇
  1994年   14篇
  1993年   11篇
  1992年   14篇
  1991年   12篇
  1990年   14篇
  1989年   7篇
  1988年   9篇
  1987年   13篇
  1986年   4篇
  1985年   9篇
  1984年   7篇
  1983年   5篇
  1982年   8篇
  1981年   8篇
  1980年   6篇
  1979年   6篇
  1978年   5篇
  1977年   4篇
  1976年   6篇
  1975年   6篇
  1973年   4篇
  1972年   5篇
排序方式: 共有2182条查询结果,搜索用时 46 毫秒
41.
In Normandy, flax is a plant of important economic interest because of its fibres. Fusarium oxysporum, a telluric fungus, is responsible for the major losses in crop yield and fibre quality. Several methods are currently used to limit the use of phytochemicals on crops. One of them is the use of plant growth promoting rhizobacteria (PGPR) occurring naturally in the rhizosphere. PGPR are known to act as local antagonists to soil‐borne pathogens and to enhance plant resistance by eliciting the induced systemic resistance (ISR). In this study, we first investigated the cell wall modifications occurring in roots and stems after inoculation with the fungus in two flax varieties. First, we showed that both varieties displayed different cell wall organization and that rapid modifications occurred in roots and stems after inoculation. Then, we demonstrated the efficiency of a Bacillus subtilis strain to limit Fusarium wilt on both varieties with a better efficiency for one of them. Finally, thermo‐gravimetry was used to highlight that B. subtilis induced modifications of the stem properties, supporting a reinforcement of the cell walls. Our findings suggest that the efficiency and the mode of action of the PGPR B. subtilis is likely to be flax variety dependent.  相似文献   
42.
43.
This paper present the content of the Musée de l'Homme exhibition “Us and them: from prejudice to racism” and provides a detailed explanation of how this content has been presented to the public. In a second section of this paper we explain some of the analysis and concepts, from a biological anthropology perspective, that were the foundation of the exhibition and provides some information about the current situation in France.  相似文献   
44.
45.
46.
We proposed to evaluate the genotoxicity and mutagenicity of a new quantum dots (QDs) nanoplatform (QDsN), consisting of CdSe/ZnS core–shell QDs encapsulated by a natural fusogenic lipid (1,2-di-oleoyl-sn-glycero-3-phosphocholine (DOPC)) and functionalized by a nucleolipid N-[5′-(2′,3′-di-oleoyl) uridine]-N′,N′,N′-trimethylammoniumtosylate (DOTAU). This QDs nanoplatform may represent a new therapeutic tool for the diagnosis and treatment of human cancers. The genotoxic, mutagenic and clastogenic effects of QDsN were compared to those of cadmium chloride (CdCl2). Three assays were used: (1) the Salmonella/microsome assay with four tester strains, (2) the comet assay and (3) the micronucleus test on CHO cells. The contribution of simulated sunlight was studied in the three assays while oxidative events were only explored in the comet assay in aliquots pretreated with the antioxidant l-ergothioneine. We found that QDsN could enter CHO-K1 cells and accumulate in cytoplasmic vesicles. It was not mutagenic in the Salmonella/mutagenicity test whereas CdCl2 was weakly positive. In the dark, both the QDsN and CdCl2 similarly induced dose-dependent increases in single-strand breaks and micronuclei. Exposure to simulated sunlight significantly potentiated the genotoxic activities of both QDsN and CdCl2, but did not significantly increase micronucleus frequencies. l-Ergothioneine significantly reduced but did not completely suppress the DNA-damaging activity of QDsN and CdCl2. The present results clearly point to the genotoxic properties and the risk of long-term adverse effects of such a nanoplatform if used for human anticancer therapy and diagnosis in the future.  相似文献   
47.
48.
Activation of innate immunity through Toll-like receptors (TLR) can abrogate transplantation tolerance by revealing hidden T cell alloreactivity. Separately, the cholinergic anti-inflammatory pathway has the capacity to dampen macrophage activation and cytokine release during endotoxemia and ischemia reperfusion injury. However, the relevance of the α7 nicotinic acetylcholine receptor (α7nAChR)-dependent anti-inflammatory pathway in the process of allograft rejection or maintenance of tolerance remains unknown. The aim of our study is to investigate whether the cholinergic pathway could impact T cell alloreactivity and transplant outcome in mice. For this purpose, we performed minor-mismatched skin allografts using donor/recipient combinations genetically deficient for the α7nAChR. Minor-mismatched skin grafts were not rejected unless the mice were housed in an environment with endogenous pathogen exposure or the graft was treated with direct application of imiquimod (a TLR7 ligand). The α7nAChR-deficient recipient mice showed accelerated rejection compared to wild type recipient mice under these conditions of TLR activation. The accelerated rejection was associated with enhanced IL-17 and IFN-γ production by alloreactive T cells. An α7nAChR-deficiency in the donor tissue facilitated allograft rejection but not in recipient mice. In addition, adoptive T cell transfer experiments in skin-grafted lymphopenic animals revealed a direct regulatory role for the α7nAChR on T cells. Taken together, our data demonstrate that the cholinergic pathway regulates alloreactivity and transplantation tolerance at multiple levels. One implication suggested by our work is that, in an organ transplant setting, deliberate α7nAChR stimulation of brain dead donors might be a valuable approach for preventing donor tissue inflammation prior to transplant.  相似文献   
49.
50.
The enzymes belonging to the cutinase family are serine enzymes active on a large panel of substrates such as cutin, triacylglycerols, and phospholipids. In the M. tuberculosis H37Rv genome, seven genes coding for cutinase-like proteins have been identified with strong immunogenic properties suggesting a potential role as vaccine candidates. Two of these enzymes which are secreted and highly homologous, possess distinct substrates specificities. Cfp21 is a lipase and Cut4 is a phospholipase A2, which has cytotoxic effects on macrophages. Structural overlay of their three-dimensional models allowed us to identify three areas involved in the substrate binding process and to shed light on this substrate specificity. By site-directed mutagenesis, residues present in these Cfp21 areas were replaced by residues occurring in Cut4 at the same location. Three mutants acquired phospholipase A1 and A2 activities and the lipase activities of two mutants were 3 and 15 fold greater than the Cfp21 wild type enzyme. In addition, contrary to mutants with enhanced lipase activity, mutants that acquired phospholipase B activities induced macrophage lysis as efficiently as Cut4 which emphasizes the relationship between apparent phospholipase A2 activity and cytotoxicity. Modification of areas involved in substrate specificity, generate recombinant enzymes with higher activity, which may be more immunogenic than the wild type enzymes and could therefore constitute promising candidates for antituberculous vaccine production.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号