首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   832篇
  免费   75篇
  2024年   2篇
  2023年   4篇
  2022年   5篇
  2021年   16篇
  2020年   13篇
  2019年   11篇
  2018年   22篇
  2017年   18篇
  2016年   34篇
  2015年   29篇
  2014年   49篇
  2013年   37篇
  2012年   68篇
  2011年   60篇
  2010年   45篇
  2009年   41篇
  2008年   52篇
  2007年   70篇
  2006年   48篇
  2005年   34篇
  2004年   37篇
  2003年   37篇
  2002年   33篇
  2001年   14篇
  2000年   5篇
  1999年   16篇
  1998年   8篇
  1997年   8篇
  1996年   5篇
  1995年   2篇
  1994年   8篇
  1993年   8篇
  1992年   10篇
  1991年   5篇
  1990年   4篇
  1989年   4篇
  1988年   8篇
  1987年   3篇
  1986年   3篇
  1985年   7篇
  1984年   3篇
  1983年   2篇
  1980年   2篇
  1973年   1篇
  1971年   1篇
  1969年   1篇
  1968年   1篇
  1967年   3篇
  1965年   7篇
  1958年   1篇
排序方式: 共有907条查询结果,搜索用时 15 毫秒
101.
Biochemical and crystallographic studies have shown that phospholipids are essential for the integrity and activity of membrane proteins. In the study presented here, we use electrochemically induced Fourier transform infrared (FTIR) spectroscopy to demonstrate variations occurring upon the presence and absence of lipids in NADH:ubiquinone oxidoreductase (complex I) from Escherchia coli by following the C=O vibration of the lipid molecule. Complex I is activated in the presence of lipids. Interestingly, in electrochemically induced FTIR difference spectra of complex I from E. coli, a new signal at 1744/1730 cm(-1) appears after addition of E. coli polar lipids, concomitant with the oxidized or reduced form, respectively. Absorbance spectra of liposomes from mixed lipids at different pH values demonstrate shifts for the carbonyl vibration depending on the environment. On this basis we suggest that lipids, though not redox active themselves, contribute in reaction-induced FTIR difference spectra, if a change occurs in the direct environment of the lipid during the observed reaction or coupled processes.  相似文献   
102.
Functionalized carbon nanotubes (f-CNT) are emerging as a new family of nanovectors for the delivery of different types of therapeutic molecules. The application of CNT in the field of carrier-mediated delivery has become possible after the recent discovery of their capacity to penetrate into the cells. CNT can be loaded with active molecules by forming stable covalent bonds or supramolecular assemblies based on noncovalent interactions. Once the cargos are carried into various cells, tissues and organs they are able to express their biological function. In this review, we will describe the potential of f-CNT to deliver different types of therapeutic molecules.  相似文献   
103.
As previously suggested by PCR analysis [R. DeTullio, R. Stifanese, F. Salamino, S. Pontremoli, E. Melloni, Characterization of a new p94-like calpain form in human lymphocytes, Biochem. J. 375 (2003) 689-696], a p94-like calpain was now established to be present in six different human cells resembling the various peripheral blood cell types. This protease resulted to be the predominant calpain isoforms whereas the conventional mu- and m-calpains are also expressed although at lower or almost undetectable amounts. The p94-like calpain has been identified by a specific mAb and displays unique features such as: Ca2+ requirement for half maximum activity around 30 microM; no autolytic conversion to a low Ca2+ requiring form and lower sensitivity to calpastatin inhibition. Following cell stimulation, the p94-like calpain undergoes inactivation, a process indicating that the protease is activated and participates in the cell responses to stimuli. The involvement of this protease isoform in immunocompetent cell activation is further supported by its partial recruitment on plasma membranes, the site of action of the conventional calpain forms. The amount of calpain translocated to the membranes correlates to the level of calpastatin which has been shown to control this process through the formation of a complex with calpain, which maintains the protease in the cytosol. These results provide new information on the calpain/calpastatin system expressed in immunocompetent cells and on the functional relationship between the p94-like calpain and the biological function of these cells.  相似文献   
104.
Studies on autoantibody production in patients treated with tumor necrosis factor-alpha (TNF-alpha) inhibitors reported contradictory results. We investigated in a prospective study the efficacy of a treatment with human monoclonal anti-TNF-alpha antibody (adalimumab) in patients with rheumatoid arthritis (RA) and we evaluated the relationship between treatment efficacy and the incidence and titers of disease-associated and non-organ-specific autoantibodies. Fifty-seven patients with RA not responsive to methotrexate and treated with adalimumab were enrolled. Antinuclear, anti-double-stranded(ds)DNA, anti-extractable nuclear antigens, anti-cardiolipin (aCL), anti-beta2 glycoprotein I (anti-beta2GPI) autoantibodies, rheumatoid factor (RF) and anti-cyclic citrullinated peptide (anti-CCP) autoantibodies were investigated at baseline and after 6 and 12 months of follow-up. Comparable parameters were evaluated in a further 55 patients treated with methotrexate only. Treatment with adalimumab induced a significant decrease in RF and anti-CCP serum levels, and the decrease in antibody titers correlated with the clinical response to the therapy. A significant induction of antinuclear autoantibodies (ANA) and IgG/IgM anti-dsDNA autoantibodies were also found in 28% and 14.6% patients, respectively, whereas aCL and anti-beta2GPI autoantibodies were not detected in significant quantities. No association between ANA, anti-dsDNA, aCL and anti-beta2GPI autoantibodies and clinical manifestations was found. Clinical efficacy of adalimumab is associated with the decrease in RF and anti-CCP serum levels that was detected after 24 weeks and remained stable until the 48th week of treatment. Antinuclear and anti-dsDNA autoantibodies, but not anti-phospholipid autoantibodies, can be induced by adalimumab but to a lower extent than in studies with other anti-TNF blocking agents.  相似文献   
105.
106.
107.
In this study we present novel bispecific antibodies that simultaneously target the insulin-like growth factor receptor type I (IGF-1R) and epidermal growth factor receptor (EGFR). For this purpose disulfide stabilized scFv domains of the EGFR/ADCC antibody GA201 were fused via serine-glycine connectors to the C-terminus of the heavy (XGFR2) or light chain (XGFR4), or the N-termini of the light (XGFR5) or heavy chain (XGFR3) of the IGF-1R antibody R1507 as parental IgG1 antibody. The resulting bispecific IGF-1R-EGFR antibodies XGFR2, XGFR3 and XGFR4 were successfully generated with yields and stability comparable to conventional IgG1 antibodies. They effectively inhibited IGF-1R and EGFR phosphorylation and 3D proliferation of H322M and H460M2 tumor cells, induced strong down-modulation of IGF-1R as well as enhanced EGFR down-modulation compared to the parental EGFR antibody GA201 and were ADCC competent. The bispecific XGFR derivatives showed a strong format dependent influence of N- or C-terminal heavy and light chain scFv attachment on ADCC activity and an increase in receptor downregulation over the parental combination in vitro. XGFR2 and XGFR4 were selected for in vivo evaluation and showed potent anti-tumoral efficacy comparable to the combination of monospecific IGF-1R and EGFR antibodies in subcutaneous BxPC3 and H322M xenograft models. In summary, we have managed to overcome issues of stability and productivity of bispecific antibodies, discovered important antibody fusion protein design related differences on ADCC activity and receptor downmodulation and show that IGF-1R-EGFR antibodies represent an attractive therapeutic strategy to simultaneously target two key components de-regulated in multiple cancer types, with the ultimate goal to avoid the formation of resistance to therapy.  相似文献   
108.
Internalization of citrate-coated and uncoated superparamagnetic iron oxide nanoparticles by human breast cancer (MCF-7) cells was verified by transmission electron microscopy imaging. Cytotoxicity studies employing metabolic and trypan blue assays manifested their excellent biocompatibility. The production of reactive oxygen species in iron oxide nanoparticle loaded MCF-7 cells was explained to originate from both, the release of iron ions and their catalytically active surfaces. Both initiate the Fenton and Haber-Weiss reaction. Additional oxidative stress caused by X-ray irradiation of MCF-7 cells was attributed to the increase of catalytically active iron oxide nanoparticle surfaces.  相似文献   
109.
Polymorphonuclear neutrophils (PMN) are potent inflammatory effector cells essential to host defense, but at the same time they may cause significant tissue damage. Thus, timely induction of neutrophil apoptosis is crucial to avoid tissue damage and induce resolution of inflammation. NK cells have been reported to influence innate and adaptive immune responses by multiple mechanisms including cytotoxicity against other immune cells. In this study, we analyzed the effect of the interaction between NK cells and neutrophils. Coculture experiments revealed that human NK cells could trigger caspase-dependent neutrophil apoptosis in vitro. This event was dependent on cell-cell contact, and experiments using blocking Abs indicated that the effect was mediated by the activating NK cell receptor NKp46 and the Fas pathway. CD56-depleted lymphocytes had minimal effects on neutrophil survival, suggesting that the ability to induce neutrophil apoptosis is specific to NK cells. Our findings provide evidence that NK cells may accelerate neutrophil apoptosis, and that this interaction may be involved in the resolution of acute inflammation.  相似文献   
110.
The blood–air barrier in the lung consists of the alveolar epithelium, the underlying capillary endothelium, their basement membranes and the interstitial space between the cell layers. Little is known about the interactions between the alveolar and the blood compartment. The aim of the present study was to gain first insights into the possible interplay between these two neighbored cell layers. We established an in vitro Transwell model of the alveolar epithelium based on human cell line H441 and investigated the influence of conditioned medium obtained from human lung endothelial cell line HPMEC-ST1.6R on the barrier properties of the H441 layers. As control for tissue specificity H441 layers were exposed to conditioned medium from human brain endothelial cell line hCMEC/D3. Addition of dexamethasone was necessary to obtain stable H441 cell layers. Moreover, dexamethasone increased expression of cell type I markers (caveolin-1, RAGE) and cell type II marker SP-B, whereas decreased the transepithelial electrical resistance (TEER) in a concentration dependent manner. Soluble factors obtained from the lung endothelial cell line increased the barrier significantly proven by TEER values and fluorescein permeability on the functional level and by the differential expression of tight junctional proteins on the molecular level. In contrast to this, soluble factors derived from brain endothelial cells weakened the barrier significantly. In conclusion, soluble factors from lung endothelial cells can strengthen the alveolar epithelium barrier in vitro, which suggests communication between endothelial and epithelial cells regulating the integrity of the blood–air barrier.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号