首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1914篇
  免费   179篇
  国内免费   1篇
  2094篇
  2021年   20篇
  2020年   21篇
  2019年   20篇
  2018年   27篇
  2017年   27篇
  2016年   41篇
  2015年   55篇
  2014年   77篇
  2013年   72篇
  2012年   111篇
  2011年   99篇
  2010年   70篇
  2009年   62篇
  2008年   104篇
  2007年   105篇
  2006年   96篇
  2005年   81篇
  2004年   95篇
  2003年   80篇
  2002年   73篇
  2001年   51篇
  2000年   51篇
  1999年   50篇
  1998年   27篇
  1997年   22篇
  1996年   20篇
  1995年   24篇
  1994年   31篇
  1993年   30篇
  1992年   33篇
  1991年   36篇
  1990年   37篇
  1989年   21篇
  1988年   34篇
  1987年   22篇
  1986年   28篇
  1985年   20篇
  1984年   17篇
  1983年   13篇
  1982年   10篇
  1979年   16篇
  1978年   13篇
  1977年   9篇
  1976年   14篇
  1974年   11篇
  1973年   17篇
  1971年   16篇
  1970年   15篇
  1969年   10篇
  1968年   11篇
排序方式: 共有2094条查询结果,搜索用时 0 毫秒
91.
Abstract The gonochoristic syllid Petitia amphophthalma is one of the truly interstitial polychaetes. P. amphophthalma does not show any epitokous modifications at maturity such as those that usually occur in syllids. The reproductive structures are unique: the male genital organs consist of a seminal vesicle in chaetigers 6–10, subdivided into a dorsal part tightly filled with spermatozoa and a ventral part with contents in different stages of spermatogenesis, one pair of sperm ducts and conspicuous gland cells situated in chaetigers 10 and 11. Their glandular secretions are discharged into the sperm duct together with those of other types of gland cells that form the duct. The oocytes develop freely within the body cavity of the females. Each of the fertile segments possesses a paired oviduct ending in a large ciliated funnel. Sperm ducts and oviducts are probably modifications of excretory organs; nephridia are absent in segments where gonoducts occur. A direct sperm transfer by lytic opening of the integument of the female and internal fertilization are inferred. Copyright © 1996 Published by Elsevier Science Ltd on behalf of the Royal Swedish Academy of Sciences  相似文献   
92.
The evolution ofMHC polymorphism has been studied by comparing the amino acid and nucleotide sequences of 14 bovine and 32 humanDRB alleles. The comparison revealed an extensive sharing of polymorphic sequence motifs in the two species. Almost identical sets of residues were found at several highly polymorphic amino acid positions in the putative antigen recognition site. Consequently, certain bovine alleles were found to be more similar to certain human alleles than to other bovine alleles. In contrast, the frequencies of silent nucleotide substitutions were found to be much higher in comparisons between species than within species implying that none of the human or bovine DRB alleles originated before the divergence of these distantly related species. The results suggest that the observed similarity inDRB polymorphism is due to convergent evolution and possibly the sharing of short ancestral sequence motifs. However, the relative role of the latter mechanism is difficult to assess due to the biased base composition in the first domain exon of polymorphic class 11 genes. The frequency of silent substitutions betweenDRB alleles was markedly lower in cattle than in man suggesting that theDRB diversity has evolved more rapidly in the former species.  相似文献   
93.
The protein purification strategies used for obtaining homogeneous rat and human soluble catechol-O-methyltransferase (S-COTM) polypeptides are reviewed. Expression and purification of recombinant rat and human S-COMT in Escherichia coli and for human S-COMT in baculovirus-infected insect cells made it possible to elucidate the S-COMT polypeptides in more detail. The application of these purification methods has allowed the crystallization of the rat S-COMT protein and the analysis of the kinetic properties of the enzyme in great detail. The availability of the pure S-COMT protein together with the structural data has also greatly enhanced the development of more potent COMT inhibitors.  相似文献   
94.
95.
Ruth Hielscher  Carola Hunte  Petra Hellwig 《BBA》2009,1787(6):617-7786
Biochemical studies have shown that cardiolipin is essential for the integrity and activity of the cytochrome bc1 complex and many other membrane proteins. Recently the direct involvement of a bound cardiolipin molecule (CL) for proton uptake at center N, the site of quinone reduction, was suggested on the basis of a crystallographic study. In the study presented here, we probe the low frequency infrared spectroscopy region as a technique suitable to detect the involvement of the lipids in redox induced reactions of the protein. First the individual infrared spectroscopic features of lipids, typically present in the yeast membrane, have been monitored for different pH values in micelles and vesicles. The pKa values for cardiolipin molecule have been observed at 4.7 ± 0.3 and 7.9 ± 1.3, respectively. Lipid contributions in the electrochemically induced FTIR spectra of the bc1 complex from yeast have been identified by comparing the spectra of the as isolated form, with samples where the lipids were digested by lipase-A2. Overall, a noteworthy perturbation in the spectral region typical for the protein backbone can be reported. Interestingly, signals at 1159, 1113, 1039 and 980 cm− 1 have shifted, indicating the perturbation of the protonation state of cardiolipin coupled to the reduction of the hemes. Additional shifts are found and are proposed to reflect lipids reorganizing due to a change in their direct environment upon the redox reaction of the hemes. In addition a small shift in the alpha band from 559 to 556 nm can be seen after lipid depletion, reflecting the interaction with heme bH and heme c. Thus, our work highlights the role of lipids in enzyme reactivity and structure.  相似文献   
96.

Background  

Recombinant protein production is universally employed as a solution to obtain the milligram to gram quantities of a given protein required for applications as diverse as structural genomics and biopharmaceutical manufacture. Yeast is a well-established recombinant host cell for these purposes. In this study we wanted to investigate whether our respiratory Saccharomyces cerevisiae strain, TM6*, could be used to enhance the productivity of recombinant proteins over that obtained from corresponding wild type, respiro-fermentative strains when cultured under the same laboratory conditions.  相似文献   
97.
RNA interference (RNAi) is widely used to specifically silence the expression of any gene to study its function and to identify and validate therapeutic targets. Despite the popularity of this technology, recent studies have shown that RNAi may also silence non-targeted genes. Here we demonstrate the utility of a quick, efficient and robust approach to directly validate the specificity of RNAi as an alternative to indirect validation of RNAi through gene expression profiling. Our approach involves reversing (complementing) the RNAi-induced phenotype by introducing a synthetic version of the target gene that is designed to escape silencing. This synthetic gene complementation approach can also be used for mutational analysis of the target gene, or to provide a functional version of a defective protein after silencing the defective gene by RNAi. Using this approach we demonstrate that the loss of systemic acquired resistance, a form of innate immunity in plants, is indeed due to the silencing of salicylic acid-binding protein 2 rather than to off-target effects.  相似文献   
98.
Dehydrins constitute a class of intrinsically disordered proteins that are expressed under conditions of water-related stress. Characteristic of the dehydrins are some highly conserved stretches of seven to 17 residues that are repetitively scattered in their sequences, the K-, S-, Y-, and Lys-rich segments. In this study, we investigate the putative role of these segments in promoting structure. The analysis is based on comparative analysis of four full-length dehydrins from Arabidopsis (Arabidopsis thaliana; Cor47, Lti29, Lti30, and Rab18) and isolated peptide mimics of the K-, Y-, and Lys-rich segments. In physiological buffer, the circular dichroism spectra of the full-length dehydrins reveal overall disordered structures with a variable content of poly-Pro helices, a type of elongated secondary structure relying on bridging water molecules. Similar disordered structures are observed for the isolated peptides of the conserved segments. Interestingly, neither the full-length dehydrins nor their conserved segments are able to adopt specific structure in response to altered temperature, one of the factors that regulate their expression in vivo. There is also no structural response to the addition of metal ions, increased protein concentration, or the protein-stabilizing salt Na(2)SO(4). Taken together, these observations indicate that the dehydrins are not in equilibrium with high-energy folded structures. The result suggests that the dehydrins are highly evolved proteins, selected to maintain high configurational flexibility and to resist unspecific collapse and aggregation. The role of the conserved segments is thus not to promote tertiary structure, but to exert their biological function more locally upon interaction with specific biological targets, for example, by acting as beads on a string for specific recognition, interaction with membranes, or intermolecular scaffolding. In this perspective, it is notable that the Lys-rich segment in Cor47 and Lti29 shows sequence similarity with the animal chaperone HSP90.  相似文献   
99.
The SARS-CoV-2 infection causes severe respiratory involvement (COVID-19) in 5–20% of patients through initial immune derangement, followed by intense cytokine production and vascular leakage. Evidence of immune involvement point to the participation of T, B, and NK cells in the lack of control of virus replication leading to COVID-19. NK cells contribute to early phases of virus control and to the regulation of adaptive responses. The precise mechanism of NK cell dysregulation is poorly understood, with little information on tissue margination or turnover. We investigated these aspects by multiparameter flow cytometry in a cohort of 28 patients hospitalized with early COVID-19.Relevant decreases in CD56brightCD16+/- NK subsets were detected, with a shift of circulating NK cells toward more mature CD56dimCD16+KIR+NKG2A+ and “memory” KIR+CD57+CD85j+ cells with increased inhibitory NKG2A and KIR molecules. Impaired cytotoxicity and IFN-γ production were associated with conserved expression of natural cytotoxicity receptors and perforin. Moreover, intense NK cell activation with increased HLA-DR and CD69 expression was associated with the circulation of CD69+CD103+ CXCR6+ tissue-resident NK cells and of CD34+DNAM-1brightCXCR4+ inflammatory precursors to mature functional NK cells. Severe disease trajectories were directly associated with the proportion of CD34+DNAM-1brightCXCR4+ precursors and inversely associated with the proportion of NKG2D+ and of CD103+ NK cells.Intense NK cell activation and trafficking to and from tissues occurs early in COVID-19, and is associated with subsequent disease progression, providing an insight into the mechanism of clinical deterioration. Strategies to positively manipulate tissue-resident NK cell responses may provide advantages to future therapeutic and vaccine approaches.  相似文献   
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号