首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1714篇
  免费   148篇
  国内免费   1篇
  2022年   12篇
  2021年   29篇
  2020年   18篇
  2019年   29篇
  2018年   26篇
  2017年   27篇
  2016年   53篇
  2015年   58篇
  2014年   80篇
  2013年   86篇
  2012年   114篇
  2011年   90篇
  2010年   74篇
  2009年   61篇
  2008年   77篇
  2007年   101篇
  2006年   77篇
  2005年   64篇
  2004年   66篇
  2003年   63篇
  2002年   60篇
  2001年   33篇
  2000年   29篇
  1999年   29篇
  1998年   16篇
  1997年   11篇
  1996年   11篇
  1994年   14篇
  1993年   14篇
  1992年   24篇
  1991年   30篇
  1990年   29篇
  1989年   21篇
  1988年   24篇
  1987年   16篇
  1986年   21篇
  1985年   18篇
  1984年   20篇
  1983年   17篇
  1982年   17篇
  1981年   13篇
  1980年   16篇
  1979年   17篇
  1978年   12篇
  1977年   12篇
  1976年   9篇
  1974年   14篇
  1973年   18篇
  1970年   9篇
  1966年   8篇
排序方式: 共有1863条查询结果,搜索用时 93 毫秒
91.
Bryophytes achieve substantial biomass and play several key functional roles in boreal forests that can influence how carbon (C) and nitrogen (N) cycling respond to atmospheric deposition of reactive nitrogen (Nr). They associate with cyanobacteria that fix atmospheric N2, and downregulation of this process may offset anthropogenic Nr inputs to boreal systems. Bryophytes also promote soil C accumulation by thermally insulating soils, and changes in their biomass influence soil C dynamics. Using a unique large-scale (0.1 ha forested plots), long-term experiment (16 years) in northern Sweden where we simulated anthropogenic Nr deposition, we measured the biomass and N2-fixation response of two bryophyte species, the feather mosses Hylocomium splendens and Pleurozium schreberi. Our data show that the biomass declined for both species; however, N2-fixation rates per unit mass and per unit area declined only for H. splendens. The low and high treatments resulted in a 29% and 54% reduction in total feather moss biomass, and a 58% and 97% reduction in total N2-fixation rate per unit area, respectively. These results help to quantify the sensitivity of feather moss biomass and N2 fixation to chronic Nr deposition, which is relevant for modelling ecosystem C and N balances in boreal ecosystems.  相似文献   
92.

Background

HCV protease inhibitors (PIs) boceprevir and telaprevir in combination with PEG-Interferon alfa and Ribavirin (P/R) is the new standard of care in the treatment of chronic HCV genotype 1 (GT1) infection. However, not every HCV GT1 infected patient is eligible for P/R/PI therapy. Furthermore phase III studies did not necessarily reflect real world as patients with advanced liver disease or comorbidities were underrepresented. The aim of our study was to analyze the eligibility and safety of P/R/PI treatment in a real world setting of a tertiary referral center.

Methods

All consecutive HCV GT1 infected patients who were referred to our hepatitis treatment unit between June and November 2011 were included. Patients were evaluated for P/R/PI according to their individual risk/benefit ratio based on 4 factors: Treatment-associated safety concerns, chance for SVR, treatment urgency and nonmedical patient related reasons. On treatment data were analyzed until week 12.

Results

208 patients were included (F3/F4 64%, mean platelet count 169/nl, 40% treatment-naïve). Treatment was not initiated in 103 patients most frequently due to safety concerns. 19 patients were treated in phase II/III trials or by local centers and a triple therapy concept was initiated at our unit in 86 patients. Hospitalization was required in 16 patients; one patient died due to a gastrointestinal infection possibly related to treatment. A platelet count of <110/nl was associated with hospitalization as well as treatment failure. Overall, 128 patients were either not eligible for therapy or experienced a treatment failure at week 12.

Conclusions

P/R/PI therapies are complex, time-consuming and sometimes dangerous in a real world setting, especially in patients with advanced liver disease. A careful patient selection plays a crucial role to improve safety of PI based therapies. A significant number of patients are not eligible for P/R/PI, emphasizing the need for alternative therapeutic options.  相似文献   
93.
A primary goal of many next‐generation bioenergy systems is to increase ecosystem services such as soil carbon (C) storage and nutrient retention. Evaluating whether bioenergy management systems are achieving these goals is challenging in part because these processes occur over long periods of time at varying spatial scales. Investigation of microbially mediated soil processes at the microbe scale may provide early insights into the mechanisms driving these long‐term ecosystem services. Furthermore, seasonal fluctuations in microbial activity are rarely considered when estimating whole ecosystem functioning, but are central to decomposition, soil structure, and realized C storage. Some studies have characterized extracellular enzyme activity within soil structures (aggregates); however, seasonal variation in decomposition at the microscale remains virtually unknown, particularly in managed ecosystems. As such, we hypothesize that temporal variation in aggregate turnover is a strong regulator of microbial activity, with important implications for decomposition and C and nitrogen (N) storage in bioenergy systems. We address variation in soil microbial extracellular enzyme activity spatially across soil aggregates and temporally across two growing seasons in three ecosystems managed for bioenergy feedstock production: Zea mays L. (corn) agroecosystem, fertilized and unfertilized reconstructed tallgrass prairie. We measured potential N‐acetyl‐glucosaminidase (NAG), β‐glucosidase (BG), β‐xylosidase (BX), and cellobiohydrolase (CB) enzyme activity. Aggregate turnover in prairie systems was driven by precipitation events and seasonal spikes in enzyme activity corresponded with aggregate turnover events. In corn monocultures, soil aggregates turned over early in the growing season, followed by increasing, albeit low, enzyme activity throughout the growing season. Independent of management system or sampling date, NAG activity was greatest in large macroaggregates (>2000 μm) and CB activity was greatest in microaggregates (<250 μm). High microbial activity coupled with greater aggregation in prairie bioenergy systems may reduce loss of soil organic matter through decomposition and increase soil C storage.  相似文献   
94.

Background

Treatment of breast cancer patients with distant metastases represents one of the biggest challenges in today’s gynecological oncology. Therefore, a better understanding of mechanisms promoting the development of metastases is of paramount importance. The serine/threonine kinase AKT was shown to drive cancer progression and metastasis. However, there is emerging data that single AKT isoforms (i.e. AKT1, AKT2 and AKT3) have different or even opposing functions in the regulation of cancer cell migration in vitro, giving rise to the hypothesis that inhibition of distinct AKT isoforms might have undesirable effects on cancer dissemination in vivo.

Methods

The triple negative breast cancer cell line MDA-MB-231 was used to investigate the functional roles of AKT in migration and metastasis. AKT single and double knockdown cells were generated using isoform specific shRNAs. Migration was analyzed using live cell imaging, chemotaxis and transwell assays. The metastatic potential of AKT isoform knockdown cells was evaluated in a subcutaneous xenograft mouse model in vivo.

Results

Depletion of AKT3, but not AKT1 or AKT2, resulted in increased migration in vitro. This effect was even more prominent in AKT2,3 double knockdown cells. Furthermore, combined downregulation of AKT2 and AKT3, as well as AKT1 and AKT3 significantly increased metastasis formation in vivo. Screening for promigratory proteins revealed that downregulation of AKT3 increases the expression of S100A4 protein. In accordance, depletion of S100A4 by siRNA approach reverses the increased migration induced by knockdown of AKT3.

Conclusions

We demonstrated that knockdown of AKT3 can increase the metastatic potential of triple negative breast cancer cells. Therefore, our results provide a rationale for the development of AKT isoform specific inhibitors.  相似文献   
95.

Background

Estrogen improves cardiac recovery after ischemia/reperfusion (I/R) by yet incompletely understood mechanisms. Mitochondria play a crucial role in I/R injury through cytochrome c-dependent apoptosis activation. We tested the hypothesis that 17β-estradiol (E2) as well as a specific ERβ agonist improve cardiac recovery through estrogen receptor (ER)β-mediated mechanisms by reducing mitochondria-induced apoptosis and preserving mitochondrial integrity.

Methods

We randomized ovariectomized C57BL/6N mice 24h before I/R to pre-treatment with E2 or a specific ERβ agonist (ERβA). Isolated hearts were perfused for 20min prior to 30min global ischemia followed by 40min reperfusion.

Results

Compared with controls, ERβA and E2 treated groups showed a significant improvement in cardiac recovery, i.e. an increase in left ventricular developed pressure, dP/dtmax and dP/dtmin. ERβA and E2 pre-treatment led to a significant reduction in apoptosis with decreased cytochrome c release from the mitochondria and increased mitochondrial levels of anti-apoptotic Bcl2 and ACAA2. Protein levels of mitochondrial translocase inner membrane (TIM23) and mitochondrial complex I of respiratory chain were increased by ERβA and E2 pre-treatment. Furthermore, we found a significant increase of myosin light chain 2 (MLC2) phosphorylation together with ERK1/2 activation in E2, but not in ERβA treated groups.

Conclusions

Activation of ERβ is essential for the improvement of cardiac recovery after I/R through the inhibition of apoptosis and preservation of mitochondrial integrity and can be a achieved by a specific ERβ agonist. Furthermore, E2 modulates MLC2 activation after I/R independent of ERβ.
  相似文献   
96.
The hydroperiod of ephemeral wetlands is often the most important characteristic determining amphibian breeding success, especially for species with long development times. In mesic and wet pine flatwoods of the southeastern United States, ephemeral wetlands were a common landscape feature. Reticulated flatwoods salamanders (Ambystoma bishopi), a federally endangered species, depend exclusively on ephemeral wetlands and require at least 11 weeks to successfully metamorphose into terrestrial adults. We empirically modeled hydroperiod of 17 A. bishopi breeding wetlands by combining downscaled historical climate-model data with a recent 9-year record (2006–2014) of observed water levels. Empirical models were subsequently used to reconstruct wetland hydrologic conditions from 1896–2014 using the downscaled historical climate datasets. Reconstructed hydroperiods for the 17 wetlands were highly variable through time but were frequently unfavorable for A. bishopi reproduction (e.g., only 61% of years, using a conservative estimate of development time [12 weeks], were conducive to larval development and metamorphosis). Using change-point analysis, we identified significant shifts in average hydroperiod over the last century in all 17 wetlands. Mean hydroperiods were shorter in recent years than at any other point since 1896, and thus less suitable for A. bishopi reproduction. We suggest that climate change will continue to impact the reproductive success of flatwoods salamanders and other ephemeral wetland breeders by reducing the number of years these wetlands have suitable hydroperiods. Consequently, we emphasize the importance of conservation and management for mitigating other forms of habitat degradation, especially maintenance of high quality breeding sites where reproduction can occur during appropriate environmental conditions.  相似文献   
97.
98.
The use of correlative analyses might be insufficient to understand the processes that control biodiversity, because the variables accounting for different hypotheses (e.g. current climate, past climate change, post‐glacial dispersal limitation) are mutually correlated. We suggest here that, in order to gain insight, it could be useful to search for latitudinal thresholds that could provide information about qualitative changes in the way biodiversity varies in space. Such tipping points could inform about higher‐level processes that are not reflected in correlative analyses. We test whether similar breakpoints in latitudinal beta‐diversity patterns exist for different vertebrate groups with diverse life histories and dispersal abilities. In birds, bats and non‐volant mammals we find breakpoints similar to those of amphibians. Differences in species composition are mainly due to species replacement from the equator to the breakpoint, but are dominated by nested species losses from the breakpoint to higher latitudes. Thus, marked thresholds discriminate two world regions where different processes appear to drive biodiversity.  相似文献   
99.
In neutrophils, adenosine triphosphate (ATP) release and autocrine purinergic signaling regulate coordinated cell motility during chemotaxis. Here, we studied whether similar mechanisms regulate the motility of breast cancer cells. While neutrophils and benign human mammary epithelial cells (HMEC) form a single leading edge, MDA-MB-231 breast cancer cells possess multiple leading edges enriched with A3 adenosine receptors. Compared to HMEC, MDA-MB-231 cells overexpress the ectonucleotidases ENPP1 and CD73, which convert extracellular ATP released by the cells to adenosine that stimulates A3 receptors and promotes cell migration with frequent directional changes. However, exogenous adenosine added to breast cancer cells or the A3 receptor agonist IB-MECA dose-dependently arrested cell motility by simultaneous stimulation of multiple leading edges, doubling cell surface areas and significantly reducing migration velocity by up to 75 %. We conclude that MDA-MB-231 cells, HMEC, and neutrophils differ in the purinergic signaling mechanisms that regulate their motility patterns and that the subcellular distribution of A3 adenosine receptors in MDA-MB-231 breast cancer cells contributes to dysfunctional cell motility. These findings imply that purinergic signaling mechanisms may be potential therapeutic targets to interfere with the motility of breast cancer cells in order to reduce the spread of cancer cells and the risk of metastasis.  相似文献   
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号