首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1714篇
  免费   148篇
  国内免费   1篇
  2022年   12篇
  2021年   29篇
  2020年   18篇
  2019年   29篇
  2018年   26篇
  2017年   27篇
  2016年   53篇
  2015年   58篇
  2014年   80篇
  2013年   86篇
  2012年   114篇
  2011年   90篇
  2010年   74篇
  2009年   61篇
  2008年   77篇
  2007年   101篇
  2006年   77篇
  2005年   64篇
  2004年   66篇
  2003年   63篇
  2002年   60篇
  2001年   33篇
  2000年   29篇
  1999年   29篇
  1998年   16篇
  1997年   11篇
  1996年   11篇
  1994年   14篇
  1993年   14篇
  1992年   24篇
  1991年   30篇
  1990年   29篇
  1989年   21篇
  1988年   24篇
  1987年   16篇
  1986年   21篇
  1985年   18篇
  1984年   20篇
  1983年   17篇
  1982年   17篇
  1981年   13篇
  1980年   16篇
  1979年   17篇
  1978年   12篇
  1977年   12篇
  1976年   9篇
  1974年   14篇
  1973年   18篇
  1970年   9篇
  1966年   8篇
排序方式: 共有1863条查询结果,搜索用时 46 毫秒
851.
Yeast cleavage factor I (CF I) is an essential complex of five proteins that binds signal sequences at the 3' end of yeast mRNA. CF I is required for correct positioning of a larger protein complex, CPF, which contains the catalytic subunits executing mRNA cleavage and polyadenylation. CF I is composed of two parts, CF IA and Hrp1. The CF IA has only four subunits, Rna14, Rna15, Pcf11, and Clp1, but the structural organization has not been fully established. Using biochemical and biophysical methods, we demonstrate that CF IA can be reconstituted from bacterially expressed proteins and that it has 2:2:1:1 stoichiometry of its four proteins, respectively. We also describe mutations that disrupt the dimer interface of Rna14 while preserving the other subunit interactions. On the basis of our results and existing interaction data, we present a topological model for heterohexameric CF IA and its association with RNA and Hrp1.  相似文献   
852.
An oxidized form of cholesterol, atheronal, is a form found in vivo that has been associated with human pathologies. We have studied mixtures of this oxidized sterol with the phospholipids phosphatidylethanolamine and phosphatidylcholine. We used phospholipids either with palmitoyl and oleoyl acyl chains on the C1 and C2 carbon atoms of glycerol or with both acyl chains being palmitoleoyl. We also compared the effects of atheronal on the curvature properties of these lipids with the action of cholesterol. We studied the bilayer to hexagonal phase transition temperature of mixtures of these lipids using differential scanning calorimetry as well as the dimensions of the hexagonal phase cylinders using X-ray diffraction. Disordering of the lamellar phase was also qualitatively assessed by the loss of sharp diffraction peaks. Our results demonstrate that the modulation of membrane curvature in these systems depends not only on the nature of the sterol, but also on the acyl chain composition of the phospholipids used. In addition, some of the effects of atheronal could be ascribed to reaction of the aldehyde and ketone groups of this oxidized sterol with the amino group of phosphatidylethanolamine.  相似文献   
853.
Red blood cells (RBCs) are a major component of blood clots, which form physiologically as a response to injury or pathologically in thrombosis. The active participation of RBCs in thrombus solidification has been previously proposed but not yet experimentally proven. Holographic optical tweezers and single-cell force spectroscopy were used to study potential cell-cell adhesion between RBCs. Irreversible intercellular adhesion of RBCs could be induced by stimulation with lysophosphatidic acid (LPA), a compound known to be released by activated platelets. We identified Ca2+ as an essential player in the signaling cascade by directly inducing Ca2+ influx using A23187. Elevation of the internal Ca2+ concentration leads to an intercellular adhesion of RBCs similar to that induced by LPA stimulation. Using single-cell force spectroscopy, the adhesion of the RBCs was identified to be approximately 100 pN, a value large enough to be of significance inside a blood clot or in pathological situations like the vasco-occlusive crisis in sickle cell disease patients.  相似文献   
854.
855.
Reactive oxygen species (ROS) function as signaling molecules mainly by reversible oxidation of redox-sensitive target proteins. ROS can be produced in response to integrin ligation and growth factor stimulation through Rac1 and its effector protein NADPH oxidase. One of the central roles of Rac1-NADPH oxidase is actin cytoskeletal rearrangement, which is essential for cell spreading and migration. Another important regulator of cell spread is focal adhesion kinase (FAK), a coordinator of integrin and growth factor signaling. Here, we propose a novel role for NADPH oxidase as a modulator of the FAK autophosphorylation site. We found that Rac1-NADPH oxidase enhanced the phosphorylation of FAK at Y397. This site regulates FAK's ability to act as a scaffold for EGF-mediated signaling, including activation of ERK. Accordingly, we found that EGF-induced activation of FAK at Y925, the following activation of ERK, and phosphorylation of FAK at the ERK-regulated S910-site depended upon NADPH oxidase. Furthermore, the inhibition of NADPH oxidase caused excessive focal adhesions, which is in accordance with ERK and FAK being modulators of focal adhesion dissociation. Our data suggest that Rac1 through NADPH oxidase is part of the signaling pathway constituted by FAK, Rac1, and ERK that regulates focal adhesion disassembly during cell spreading.  相似文献   
856.
Stem cell factor (SCF) known as the c-kit ligand, plays important roles in spermatogenesis, melanogenesis and early stages of hematopoiesis. As for the latter, SCF is essential for growth and expansion of hematopoietic stem and progenitor cells. We herein describe the production of recombinant murine SCF from Escherichia coli as soluble thioredoxin-fusion protein. The formation of insoluble and inactive inclusion bodies, usually observed when SCF is expressed in E. coli, was almost entirely prevented. After purification based on membrane adsorber technology, the fusion protein was subsequently cleaved by TEV protease in order to release mature mSCF. Following dialysis and a final purification step, the target protein was isolated in high purity. Bioactivity of mSCF was proven by different tests (MTT analogous assay, long-term proliferation assay) applying a human megakaryocytic cell line. Furthermore, the biological activity of the uncleaved fusion protein was tested as well. We observed a significant activity, even though it was less than the activity displayed by the purified mSCF. In summary, avoiding inclusion body formation we present an efficient production procedure for mSCF, one of the most important stem cell cytokines.  相似文献   
857.
With the continuous discovery of new alternative sources containing mesenchymal stem cells (MSCs), regenerative medicine therapies may find tailored applications in the clinics. Although these cells have been demonstrated to express specific mesenchymal markers and are able to differentiate into mesenchymal lineages in ad hoc culture conditions, it is still critical to determine the yield and differentiation potential of these cells in comparative studies under the same standardized culture environment. Moreover, the opportunity to use MSCs from bone marrow (BM) of multiorgan donors for cell banking is of relevant importance. In the attempt to establish the relative potential of alternative MSCs sources, we analyzed and compared the yield and differentiation potential of human MSCs from adipose and BM tissues of cadaveric origins, and from fetal annexes (placenta and umbilical cord) after delivery using standardized isolation and culture protocols. BM contained a significantly higher amount of mononuclear cells (MNCs) compared to the other tissue sources. Nonetheless, a higher cell seeding density was needed for these cells to successfully isolate MSCs. The MNCs populations were highly heterogeneous and expressed variable MSCs markers with a large variation from donor to donor. After MSCs selection through tissue culture plastic adhesion, cells displayed a comparable proliferation capacity with distinct colony morphologies and were positive for a pool of typical MSCs markers. In vitro differentiation assays showed a higher osteogenic differentiation capacity of adipose tissue and BM MSCs, and a higher chondrogenic differentiation capacity of BM MSCs.  相似文献   
858.
Ascorbic acid (AA) increases cardiomyogenesis of embryonic stem (ES) cells. Herein we show that treatment of mouse ES cells with AA enhanced cardiac differentiation accompanied by an upregulation of the NADPH oxidase isoforms NOX2 and NOX4, phosphorylation of endothelial nitric oxide synthase (eNOS), and cyclic GMP (cGMP) formation, indicating that reactive oxygen species (ROS) as well as nitric oxide (NO) may be involved in cardiomyogenesis. In whole mount embryoid bodies as well as isolated Flk-1-positive (Flk-1+) cardiovascular progenitor cells ROS elevation by AA was observed in early stages of differentiation (Days 4-7), and absent at Day 10. In contrast NO generation following incubation with AA was absent at Day 4 and increased at Days 7 and 10. AA-mediated cardiomyogenesis was blunted by the NADPH oxidase inhibitors diphenylen iodonium (DPI) and apocynin, the free radical scavengers N-(2-mercaptopropionyl)-glycine (NMPG) and ebselen, and the NOS inhibitor L-NAME. Downregulation of NOX4 by short hairpin RNA (shRNA) resulted in significant inhibition of cardiomyogenesis and abolished the stimulation of MHC-ß and MLC2v gene expression observed on AA treatment. Our data demonstrate that AA stimulates cardiomyocyte differentiation from ES cells by signaling pathways that involve ROS generated at early stages and NO at late stages of cardiomyogenesis.  相似文献   
859.
Ubiquitination of the CSF3R [CSF3 (colony-stimulating factor 3) receptor] occurs after activated CSF3Rs are internalized and reside in early endosomes. CSF3R ubiquitination is crucial for lysosomal routing and degradation. The E3 ligase SOCS3 (suppressor of cytokine signalling 3) has been shown to play a major role in this process. Deubiquitinating enzymes remove ubiquitin moieties from target proteins by proteolytic cleavage. Two of these enzymes, AMSH [associated molecule with the SH3 domain of STAM (signal transducing adaptor molecule)] and UBPY (ubiquitin isopeptidase Y), interact with the general endosomal sorting machinery. Whether deubiquitinating enzymes control CSF3R trafficking from early towards late endosomes is unknown. In the present study, we asked whether AMSH, UBPY or a murine family of deubiquitinating enzymes could fulfil such a role. This DUB family (deubiquitin enzyme family) comprises four members (DUB1, DUB1A, DUB2 and DUB2A), which were originally described as being haematopoietic-specific and cytokine-inducible, but their function in cytokine receptor routing and signalling has remained largely unknown. We show that DUB2A expression is induced by CSF3 in myeloid 32D cells and that DUB2 decreases ubiquitination and lysosomal degradation of the CSF3R, leading to prolonged signalling. These results support a model in which CSF3R ubiquitination is dynamically controlled at the early endosome by feedback mechanisms involving CSF3-induced E3 ligase (SOCS3) and deubiquitinase (DUB2A) activities.  相似文献   
860.
We recently described the design of Escherichia coli K12 and Salmonella enterica sv Typhimurium to display the gangliomannoside 3 (GM3) antigen on the cell surface [1]. We report here the fucosylation of modified lipooligosaccharide in a recombinant E.coli strain with a truncated lipid A core due to deletion of the core glycosyltransferases genes waaO and waaB. This truncated structure was used as a scaffold to assemble the Lewis Y motif by consequent action of the heterologously expressed β-1,4 galactosyltransferase LgtE (Neisseria gonorrheae), the β-1,3 N-acetylglucosaminyltransferase LgtA and the β-1,3 galactosyltransferase LgtB from Neisseria meningitidis, as well as the α-1,2 and α-1,3 fucosyltransferases FutC and FutA from Helicobacter pylori. We show the display of the Lewis Y structure by immunological and chemical analysis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号