首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5087篇
  免费   486篇
  国内免费   1篇
  5574篇
  2022年   30篇
  2021年   53篇
  2020年   35篇
  2019年   44篇
  2018年   41篇
  2017年   47篇
  2016年   98篇
  2015年   169篇
  2014年   166篇
  2013年   239篇
  2012年   312篇
  2011年   354篇
  2010年   218篇
  2009年   196篇
  2008年   274篇
  2007年   331篇
  2006年   295篇
  2005年   318篇
  2004年   319篇
  2003年   292篇
  2002年   322篇
  2001年   63篇
  2000年   44篇
  1999年   84篇
  1998年   81篇
  1997年   68篇
  1996年   60篇
  1995年   52篇
  1994年   59篇
  1993年   57篇
  1992年   51篇
  1991年   40篇
  1990年   42篇
  1989年   45篇
  1988年   40篇
  1987年   42篇
  1986年   36篇
  1985年   33篇
  1984年   49篇
  1983年   39篇
  1982年   43篇
  1981年   44篇
  1980年   34篇
  1979年   29篇
  1978年   34篇
  1977年   36篇
  1976年   36篇
  1974年   22篇
  1973年   38篇
  1972年   23篇
排序方式: 共有5574条查询结果,搜索用时 14 毫秒
71.

Background

The retina has a unique three-dimensional architecture, the precise organization of which allows for complete sampling of the visual field. Along the radial or apicobasal axis, retinal neurons and their dendritic and axonal arbors are segregated into layers, while perpendicular to this axis, in the tangential plane, four of the six neuronal types form patterned cellular arrays, or mosaics. Currently, the molecular cues that control retinal cell positioning are not well-understood, especially those that operate in the tangential plane. Here we investigated the role of the PTEN phosphatase in establishing a functional retinal architecture.

Methodology/Principal Findings

In the developing retina, PTEN was localized preferentially to ganglion, amacrine and horizontal cells, whose somata are distributed in mosaic patterns in the tangential plane. Generation of a retina-specific Pten knock-out resulted in retinal ganglion, amacrine and horizontal cell hypertrophy, and expansion of the inner plexiform layer. The spacing of Pten mutant mosaic populations was also aberrant, as were the arborization and fasciculation patterns of their processes, displaying cell type-specific defects in the radial and tangential dimensions. Irregular oscillatory potentials were also observed in Pten mutant electroretinograms, indicative of asynchronous amacrine cell firing. Furthermore, while Pten mutant RGC axons targeted appropriate brain regions, optokinetic spatial acuity was reduced in Pten mutant animals. Finally, while some features of the Pten mutant retina appeared similar to those reported in Dscam-mutant mice, PTEN expression and activity were normal in the absence of Dscam.

Conclusions/Significance

We conclude that Pten regulates somal positioning and neurite arborization patterns of a subset of retinal cells that form mosaics, likely functioning independently of Dscam, at least during the embryonic period. Our findings thus reveal an unexpected level of cellular specificity for the multi-purpose phosphatase, and identify Pten as an integral component of a novel cell positioning pathway in the retina.  相似文献   
72.
Phenanthrene mineralization rates were found to vary widely among four soils; differences in soil nutrient levels was one hypothesis to explain this variation. To test this hypothesis, phenanthrene mineralization rates were measured in these soils with, and without, added nitrogen and phosphorus. Mineralization rates either remained unchanged or were depressed by the addition of nitrogen and phosphorus. Phenanthrene degradation rates remained unchanged in the soil which had the highest indigenous levels of nitrogen and phosphorus and which showed the largest increase in phosphorus levels after nutrients were added. The soils in which degradation rates were depressed had lower initial phosphorus concentrations and showed much smaller or no measurable increase in phosphorus levels after nutrients were added to the soils. To understand the response of phenanthrene degradation rates to added nitrogen and phosphorus, it may be necessary to consider the bioavailability of added nutrients and nutrient induced changes in microbial metabolism and ecology.  相似文献   
73.
Experimental data and homology modeling suggest a structure for the exofacial configuration of the Glut1 glucose transporter in which 8 transmembrane helices form an aqueous cavity in the bilayer that is stabilized by four outer helices. The role of transmembrane segment 6, predicted to be an outer helix in this model, was examined by cysteine-scanning mutagenesis and the substituted cysteine accessibility method using the membrane-impermeant, sulfhydryl-specific reagent, p-chloromercuribenzene-sulfonate (pCMBS). A fully functional Glut1 molecule lacking all 6 native cysteine residues was used as a template to produce a series of 21 Glut1 point mutants in which each residue along helix 6 was individually changed to cysteine. These mutants were expressed in Xenopus oocytes, and their expression levels, functional activities, and sensitivities to inhibition by pCMBS were determined. Cysteine substitutions at Leu(204) and Pro(205) abolished transport activity, whereas substitutions at Ile(192), Pro(196), Gln(200), and Gly(201) resulted in inhibition of activity that ranged from approximately 35 to approximately 80%. Cysteine substitutions at Leu(188), Ser(191), and Leu(199) moderately augmented specific transport activity relative to the control. These results were dramatically different from those previously reported for helix 12, the structural cognate of helix 6 in the pseudo-symmetrical structural model, for which none of the 21 single-cysteine mutants exhibited reduced activity. Only the substitution at Leu(188) conferred inhibition by pCMBS, suggesting that most of helix 6 is not exposed to the external solvent, consistent with its proposed role as an outer helix. These data suggest that helix 6 contains amino acid side chains that are critical for transport activity and that structurally analogous outer helices may play distinct roles in the function of membrane transporters.  相似文献   
74.
Abstract Lesquerella stonensis (Brassicaceae) is an obligate winter annual endemic to a small portion of Rutherford County in the Central Basin of Tennessee, where it grows in disturbed habitats. This species forms a persistent seed bank, and seeds remain viable in the soil for at least 6 years. Seeds are dormant at maturity in May and are dispersed as soon as they ripen. Some of the seeds produced in the current year, as well as some of those in the persistent seed bank, afterripen during late spring and summer; others do not afterripen and thus remain dormant. Seeds require actual or simulated spring/summer temperatures to come out of dormancy. Germination occurs in September and October. Fully afterripened seeds germinate over a wide range of thermoperiods (15/6–35/20°C) and to a much higher percentage in light (14 h photoperiod) than in darkness. The optimum daily thermoperiod for germination was 30/15°C. Nondormant seeds that do not germinate in autumn are induced back into dormancy (secondary dormancy) by low temperatures (e.g., 5°C) during winter, and those that are dormant do not afterripen; thus seeds cannot germinate in spring. These seed dormancy/ germination characteristics of L. stonensis do not differ from those reported for some geographically widespread, weedy species of winter annuals and thus do not help account for the narrow endemism of this species.  相似文献   
75.
76.
The type II secretion system (main terminal branch of the general secretion pathway) is used by diverse gram-negative bacteria to secrete extracellular proteins. Proteins secreted by this pathway are synthesized with an N-terminal signal peptide which is removed upon translocation across the inner membrane, but the signals which target the mature proteins for secretion across the outer membrane are unknown. The plant pathogens Erwinia chrysanthemi and Erwinia carotovora secrete several isozymes of pectate lyase (Pel) by the out-encoded type II pathway. However, these two bacteria cannot secrete Pels encoded by heterologously expressed pel genes from the other species, suggesting the existence of species-specific secretion signals within these proteins. The functional cluster of E. chrysanthemi out genes carried on cosmid pCPP2006 enables Escherichia coli to secrete E. chrysanthemi, but not E. carotovora, Pels. We exploited the high sequence similarity between E. chrysanthemi PelC and E. carotovora Pel1 to construct 15 hybrid proteins in which different regions of PelC were replaced with homologous sequences from Pel1. The differential secretion of these hybrid proteins by E. coli(pCPP2006) revealed M118 to D175 and V215 to C329 as regions required for species-specific secretion of PelC. We propose that the primary targeting signal is contained within the external loops formed by G274 to C329 but is dependent on residues in M118 to D170 and V215 to G274 for proper positioning.  相似文献   
77.
In north central Kentucky, seeds of the mesic forest biennial Hydrophyllum appendiculatum Michx., are innately dormant at maturity in June. Under natural and simulated seasonal temperature changes, dormancy break occurred in two stages. Root dormancy was broken by high summer temperatures, and shoot dormancy was broken by low winter temperatures. Consequently, roots emerged from seeds during autumn, and cotyledons emerged the following spring. A 90-day warm (30/15 C) stratification treatment broke root dormancy, but the roots emerged only after transfer to lower temperatures. After the warm stratification treatment, roots emerged from 93, 73, 6 and 9% of the seeds incubated at 5, 15/6, 20/10 and 30/15 C (12/12 hr), respectively. Zero, 28, 56 and 84 days of cold (5 C) stratification of seeds with emerged roots resulted in 9, 21, 49 and 82% cotyledon emergence, respectively, at 20/10 C. Thus, H. appendiculatum exhibits a type of morpho-physiological dormancy known as epicotyl dormancy. Although many seeds germinate the first year, others remain dormant and germinate in successive years until the fourth season after ripening.  相似文献   
78.
The membrane proximal external region (MPER) of the gp41 subunit of the HIV-1 envelope glycoprotein (Env) contains determinants for broadly neutralizing antibodies and has remained an important focus of vaccine design. However, creating an immunogen that elicits broadly neutralizing antibodies to this region has proven difficult in part due to the relative inaccessibility of the MPER in the native conformation of Env. Here, we describe the antigenicity and immunogenicity of a panel of oligomeric gp41 immunogens designed to model a fusion-intermediate conformation of Env in order to enhance MPER exposure in a relevant conformation. The immunogens contain segments of the gp41 N- and C-heptad repeats to mimic a trapped intermediate, followed by the MPER, with variations that include different N-heptad lengths, insertion of extra epitopes, and varying C-termini. These well-characterized immunogens were evaluated in two different immunization protocols involving gp41 and gp140 proteins, gp41 and gp160 DNA primes, and different immunization schedules and adjuvants. We found that the immunogens designed to reduce extension of helical structure into the MPER elicited the highest MPER antibody binding titers, but these antibodies lacked neutralizing activity. The gp41 protein immunogens also elicited higher MPER titers than the gp140 protein immunogen. In prime-boost studies, the best MPER responses were seen in the groups that received DNA priming with gp41 vectors followed by gp41 protein boosts. Finally, although titers to the entire protein immunogen were similar in the two immunization protocols, MPER-specific titers differed, suggesting that the immunization route, schedule, dose, or adjuvant may differentially influence MPER immunogenicity. These findings inform the design of future MPER immunogens and immunization protocols.  相似文献   
79.
Heterocyclic ketones as inhibitors of histone deacetylase   总被引:1,自引:0,他引:1  
Several heterocyclic ketones were investigated as potential inhibitors of histone deacetylase. Nanomolar inhibitors such as 22 and 25 were obtained, the anti-proliferative activity of which were shown to be mediated by HDAC inhibition.  相似文献   
80.
Nine indigenous cachaça Saccharomyces cerevisiae strains and one wine strain were compared for their trehalose metabolism characteristics under non-lethal (40°C) and lethal (52°C) heat shock, ethanol shock and combined heat and ethanol stresses. The yeast protection mechanism was studied through trehalose concentration, neutral trehalase activity and expression of heat shock proteins Hsp70 and Hsp104. All isolates were able to accumulate trehalose and activate neutral trehalase under stress conditions. No correlation was found between trehalose levels and neutral trehalase activity under heat or ethanol shock. However, when these stresses were combined, a positive relationship was found. After pre-treatment at 40°C for 60 min, and heat shock at 52°C for 8 min, eight strains maintained their trehalose levels and nine strains improved their resistance against lethal heat shock. Among the investigated stresses, heat treatment induced the highest level of trehalose and combined heat and ethanol stresses activated the neutral trehalase most effectively. Hsp70 and Hsp104 were expressed by all strains at 40°C and all of them survived this temperature although a decrease in cell viability was observed at 52°C. The stress imposed by more than 5% ethanol (v/v) represented the best condition to differentiate strains based on trehalose levels and neutral trehalase activity. The investigated S. cerevisiae strains exhibited different characteristics of trehalose metabolism, which could be an important tool to select strains for the cachaça fermentation process.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号