首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5131篇
  免费   491篇
  国内免费   1篇
  2022年   31篇
  2021年   55篇
  2020年   36篇
  2019年   44篇
  2018年   41篇
  2017年   47篇
  2016年   98篇
  2015年   170篇
  2014年   165篇
  2013年   241篇
  2012年   313篇
  2011年   354篇
  2010年   218篇
  2009年   196篇
  2008年   274篇
  2007年   332篇
  2006年   301篇
  2005年   322篇
  2004年   320篇
  2003年   293篇
  2002年   323篇
  2001年   71篇
  2000年   46篇
  1999年   84篇
  1998年   82篇
  1997年   70篇
  1996年   60篇
  1995年   52篇
  1994年   59篇
  1993年   57篇
  1992年   52篇
  1991年   39篇
  1990年   42篇
  1989年   44篇
  1988年   41篇
  1987年   41篇
  1986年   37篇
  1985年   33篇
  1984年   49篇
  1983年   40篇
  1982年   43篇
  1981年   44篇
  1980年   36篇
  1979年   30篇
  1978年   36篇
  1977年   36篇
  1976年   37篇
  1975年   23篇
  1973年   39篇
  1972年   23篇
排序方式: 共有5623条查询结果,搜索用时 15 毫秒
991.
Actin polymerization at the immune synapse is required for T cell activation and effector function; however, the relevant regulatory pathways remain poorly understood. We showed previously that binding to antigen presenting cells (APCs) induces localized activation of Cdc42 and Wiskott-Aldrich Syndrome protein (WASP) at the immune synapse. Several lines of evidence suggest that Tec kinases could interact with WASP-dependent actin regulatory processes. Since T cells from Rlk-/-, Itk-/-, and Rlk-/- x Itk-/- mice have defects in signaling and development, we asked whether Itk or Rlk function in actin polymerization at the immune synapse. We find that Itk-/- and Rlk-/- x Itk-/- T cells are defective in actin polymerization and conjugate formation in response to antigen-pulsed APCs. Itk functions downstream of the TCR, since similar defects were observed upon TCR engagement alone. Using conformation-specific probes, we show that although the recruitment of WASP and Arp2/3 complex to the immune synapse proceeds normally, the localized activation of Cdc42 and WASP is defective. Finally, we find that the defect in Cdc42 activation likely stems from a requirement for Itk in the recruitment of Vav to the immune synapse. Our results identify Itk as a key element of the pathway leading to localized actin polymerization at the immune synapse.  相似文献   
992.
We have discovered that polar 7-substituents of pyridopyrimidine derivatives affect not only whole cell AK inhibitory potency, but also selectivity in causing locomotor side effects in vivo animal models. We have identified compound, 1o, which has potent whole cell AK inhibitory potency, analgesic activity and minimal reduction of locomotor activity.  相似文献   
993.
This study compares Staphylococcus aureus ATCC 29213 and Pseudomonas aeruginosa ATCC 27853 biofilm and planktonic cell susceptibility to the selenium and tellurium oxyanions selenite (SeO3(2-)), tellurate (TeO4(2-)), and tellurite (TeO3(2-)). P. aeruginosa planktonic and biofilm cultures reduced the selenium and tellurium oxyanions to orange and black end-products (respectively) and were equally tolerant to killing by these metalloid compounds. S. aureus planktonic cell cultures processed these metalloid oxyanions in a similar way, but the corresponding biofilm cultures did not. S. aureus biofilms were approximately two and five times more susceptible to killing by tellurate and tellurite (respectively) than the corresponding planktonic cultures. Our data indicate that the means of reducing metalloid oxyanions may differ between the physiology displayed in biofilm and planktonic cultures of the same bacterial strain.  相似文献   
994.
Hyperhydricity is a physiological disorder frequently affecting shoots vegetatively propagated in vitro. Hyperhydric shoots are characterised by a translucent aspect due to a chlorophyll deficiency, a not very developed cell wall and a high water content. Hyperhydricity of Prunus avium shoots was expressed in vitro in one multiplication cycle by replacing the gelling agent agar (normal shoots: NS) by gelrite (hyperhydric shoots: HS). P. avium shoots evolving towards the hyperhydric state produced higher amounts of ethylene, polyamines (PAs) and proline, which are substances considered as stress markers. A higher activity of glutathione peroxidase (GPX; EC 1.11.1.9), involved in organic hydroperoxide elimination, suggested an increased production of these compounds in HS. The unchanged free fatty acid composition indicated no HS membrane damages compared to NS. The ploidy level of HS nuclei was not affected, but the bigger size and the lower percentage of nuclei during the S phase suggested a slowing down of the cell cycle. The results argued for a stress response of the HS, but no signs of oxidative damages of lipid membrane and nucleus were observed. The discussion points out paradoxical results in a classical analysis of stress and suggests an alternative way of defense mechanisms in HS, involving homeostatic regulation and controlled degradation processes to maintain integrity and vital functions of the cell.  相似文献   
995.
The synthesis of novel 3-(octahydropyrido[1,2-a]pyrazin-2-yl)- and 3-(hexahydropyrrolo[1,2-a]pyrazin-2-yl)phenyl-2-benzo[b]thiophene sulphonamide derivatives 3, (S)-4 and (R)-4 is described. The compounds show high affinity for the 5-HT6 receptor, excellent selectivity against a range of other receptors and good brain penetration.  相似文献   
996.
eNOS (endothelial nitric oxide synthase) contains a MAPK (mitogen-activated protein kinase)-binding site associated with a major eNOS control element. Purified ERK (extracellular-signal-regulated kinase) phosphorylates eNOS with a stoichiometry of 2–3 phosphates per eNOS monomer. Phosphorylation decreases NO synthesis and cytochrome c reductase activity. Three sites of phosphorylation were detected by MS. All sites matched the SP and TP MAPK (mitogen-activated protein kinase) phosphorylation motif. Ser602 lies at the N-terminal edge of the 42-residue eNOS AI (autoinhibitory) element. The pentabasic MAPK-binding site lies at the opposite end of the AI, and other critical regulatory features are between them. Thr46 and Ser58 are located in a flexible region associated with the N terminus of the oxygenase domain. In contrast with PKC (protein kinase C), phosphorylation by ERK did not significantly interfere with CaM (calmodulin) binding as analysed by optical biosensing. Instead, ERK phosphorylation favours a state in which FMN and FAD are in close association and prevents conformational changes that expose reduced FMN to acceptors. The close associations between control sites in a few regions of the molecule suggest that control of signal generation is modulated by multiple inputs interacting directly on the surface of eNOS via overlapping binding domains and tightly grouped targets.  相似文献   
997.
998.
The analysis of molecular data from natural populations has allowed researchers to answer diverse ecological questions that were previously intractable. In particular, ecologists are often interested in the demographic history of populations, information that is rarely available from historical records. Methods have been developed to infer demographic parameters from genomic data, but it is not well understood how inferred parameters compare to true population history or depend on aspects of experimental design. Here, we present and evaluate a method of SNP discovery using RNA sequencing and demographic inference using the program δaδi, which uses a diffusion approximation to the allele frequency spectrum to fit demographic models. We test these methods in a population of the checkerspot butterfly Euphydryas gillettii. This population was intentionally introduced to Gothic, Colorado in 1977 and has as experienced extreme fluctuations including bottlenecks of fewer than 25 adults, as documented by nearly annual field surveys. Using RNA sequencing of eight individuals from Colorado and eight individuals from a native population in Wyoming, we generate the first genomic resources for this system. While demographic inference is commonly used to examine ancient demography, our study demonstrates that our inexpensive, all‐in‐one approach to marker discovery and genotyping provides sufficient data to accurately infer the timing of a recent bottleneck. This demographic scenario is relevant for many species of conservation concern, few of which have sequenced genomes. Our results are remarkably insensitive to sample size or number of genomic markers, which has important implications for applying this method to other nonmodel systems.  相似文献   
999.
Ribonuclease P (RNase P) is an essential endonuclease that catalyzes the 5′ end maturation of precursor tRNA (pre-tRNA). Bacterial RNase P is an attractive potential antibacterial target because it is essential for cell survival and has a distinct subunit composition compared to the eukaryal counterparts. To accelerate both structure-function studies and discovery of inhibitors of RNase P, we developed the first real-time RNase P activity assay using fluorescence polarization/anisotropy (FP/FA) with a 5′ end fluorescein-labeled pre-tRNAAsp substrate. This FP/FA assay also detects binding of small molecules to pre-tRNA. Neomycin B and kanamycin B bind to pre-tRNAAsp with a Kd value that is comparable to their IC50 value for inhibition of RNase P, suggesting that binding of these antibiotics to the pre-tRNA substrate contributes to the inhibitory activity. This assay was optimized for high-throughput screening (HTS) to identify specific inhibitors of RNase P from a 2880 compound library. A natural product derivative, iriginol hexaacetate, was identified as a new inhibitor of Bacillus subtilis RNase P. The FP/FA methodology and inhibitors reported here will further our understanding of RNase P molecular recognition and facilitate discovery of antibacterial compounds that target RNase P.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号