首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5941篇
  免费   643篇
  国内免费   1篇
  6585篇
  2021年   62篇
  2020年   39篇
  2019年   51篇
  2018年   54篇
  2017年   53篇
  2016年   107篇
  2015年   202篇
  2014年   186篇
  2013年   265篇
  2012年   347篇
  2011年   395篇
  2010年   244篇
  2009年   213篇
  2008年   309篇
  2007年   368篇
  2006年   338篇
  2005年   351篇
  2004年   347篇
  2003年   319篇
  2002年   348篇
  2001年   90篇
  2000年   69篇
  1999年   107篇
  1998年   92篇
  1997年   81篇
  1996年   79篇
  1995年   69篇
  1994年   72篇
  1993年   73篇
  1992年   84篇
  1991年   62篇
  1990年   64篇
  1989年   69篇
  1988年   58篇
  1987年   60篇
  1986年   52篇
  1985年   44篇
  1984年   59篇
  1983年   52篇
  1982年   47篇
  1981年   52篇
  1980年   40篇
  1979年   34篇
  1978年   42篇
  1977年   52篇
  1976年   43篇
  1975年   33篇
  1974年   31篇
  1973年   49篇
  1972年   31篇
排序方式: 共有6585条查询结果,搜索用时 15 毫秒
131.
Chronic hepatitis B virus (HBV) infections are associated with persistent immune killing of infected hepatocytes. Hepatocytes constitute a largely self-renewing population. Thus, immune killing may exert selective pressure on the population, leading it to evolve in order to survive. A gradual course of hepatocyte evolution toward an HBV-resistant state is suggested by the substantial decline in the fraction of infected hepatocytes that occurs during the course of chronic infections. Consistent with hepatocyte evolution, clones of >1,000 hepatocytes develop postinfection in the noncirrhotic livers of chimpanzees chronically infected with HBV and of woodchucks infected with woodchuck hepatitis virus (W. S. Mason, A. R. Jilbert, and J. Summers, Proc. Natl. Acad. Sci. U. S. A. 102:1139-1144, 2005; W. S. Mason et al., J. Virol. 83:8396-8408, 2009). The present study was carried out to determine (i) if extensive clonal expansion of hepatocytes also occurred in human HBV carriers, particularly in the noncirrhotic liver, and (ii) if clonal expansion included normal-appearing hepatocytes, not just hepatocytes that appear premalignant. Host DNA extracted from fragments of noncancerous liver, collected during surgical resection of hepatocellular carcinoma (HCC), was analyzed by inverse PCR for randomly integrated HBV DNA as a marker of expanding hepatocyte lineages. This analysis detected extensive clonal expansion of hepatocytes, as previously found in chronically infected chimpanzees and woodchucks. Tissue sections were stained with hematoxylin and eosin (H&E), and DNA was extracted from the adjacent section for inverse PCR to detect integrated HBV DNA. This analysis revealed that clonal expansion can occur among normal-appearing human hepatocytes.Transient hepatitis B virus (HBV) infections, which generally last <6 months, do not cause cirrhosis and cause only minor increases in the risk of hepatocellular carcinoma (HCC) (3, 46). Chronic infections, typically lifelong, can cause cirrhosis and HCC (3). Of the ∼350 million HBV carriers now alive, ca. 60 million will die prematurely of cirrhosis and/or HCC. Cirrhosis, which usually develops late in infection, is a significant risk factor for HCC. Early reports stated that most HCCs occur on a background of cirrhosis. However, later studies suggested that as many as 50% of HCCs may occur in noncirrhotic liver (4), that is, in patients in whom the progression of liver disease still appears rather mild. Thus, liver damage that appears severe by histologic examination is not a prerequisite for HCC.Interestingly, during chronic HBV infections there is, in the face of persistent viremia, a decline over time in the fraction of infected hepatocytes, from 100% to as little as a few percent (5, 12-14, 16, 17, 22, 23, 27, 34, 37, 38). Along with HCC, this is perhaps the most surprising and unexplained outcome of chronic infection. The timing of this decline has not been systematically studied, but it is presumably gradual, occurring over years or decades, and dependent on persistent, albeit low-level, killing of infected hepatocytes by antiviral cytotoxic T lymphocytes (CTLs) (20). It is believed that the liver is largely a closed, self-renewing population. Such a population might be expected to evolve under any strong or persistent selective pressure. In HBV-infected patients, the earliest and most persistent selective pressure is immune killing of infected hepatocytes, which should initially constitute the entire hepatocyte population. Persistent killing of HBV-infected hepatocytes could lead to clonal expansion of mutant or epigenetically altered hepatocytes that had lost the ability to support infection and that were not, therefore, targeted by antiviral CTLs.Such a selective pressure may explain why foci of altered hepatocytes (FAH) and HCC are typically virus negative (1, 6, 11, 26, 29, 31, 35, 40, 41, 44). Normal or preneoplastic hepatocytes (e.g., in FAH) that have evaded the host immune response should undergo clonal expansion, because their death rate is lower than that of surrounding hepatocytes, even if they do not have a higher growth rate. Indeed, clonal expansion of hepatocytes has been detected, in the absence of cirrhosis, in woodchucks chronically infected with woodchuck hepatitis virus (WHV) (19) and in chimpanzees chronically infected with HBV (21). The presence of discrete foci of normal-appearing but virus-negative hepatocytes in chronically infected woodchuck livers (39) suggested, but did not prove, that normal-appearing hepatocytes that had lost the ability to support virus replication might clonally expand.The purpose of the present study was, therefore, to determine if normal-appearing hepatocytes undergo clonal expansion. To address this issue, we focused on noncirrhotic livers, because hepatocyte appearance and organization in many cirrhotic nodules are often considered to indicate premalignancy (7, 24, 25, 44), and this, together with the cellular environment in the cirrhotic liver, may explain why as many as 50% of cirrhotic nodules have been found to be made up of clonally expanded hepatocytes (2, 18, 24, 25, 28, 44). In older HBV patients, cirrhosis, the result of cumulative scarring due to ongoing tissue injury, presumably produces an evolutionary pressure on the hepatocyte population due to restricted blood flow and altered hepatic architecture.Clonal expansion was detected by assaying for integrated HBV DNA by inverse PCR (19, 21). Because integration occurs at random sites in host DNA, each integration event provides a unique genetic marker for the cell in which it occurred, and for any daughter cells. Thus, the clonal expansion of these tagged hepatocytes can be measured by determining how many times a given virus-cell DNA junction is repeated in a liver fragment. Analysis of fragments of nontumorous liver from noncirrhotic HCC patients revealed that at least 1% of hepatocytes are present as clones of >1,000 cells. Examination of 5-μm-thick sections of paraffin-embedded livers from the same patients revealed that clonally expanded hepatocytes were present in liver sections lacking preneoplastic lesions or changes. Therefore, normal-appearing hepatocytes must have undergone clonal expansion. Although clonal expansion was detected by analysis of integrated HBV DNA, the expansion did not appear to be due to the site of integration of the viral DNA into host DNA.These results are consistent with the hypothesis that immune selection and the later emergence of liver cirrhosis, with altered lobular organization and restricted blood flow, may constitute the two major selective pressures on the hepatocyte population that culminate in hepatocellular carcinoma. More-direct proof of the role, if any, of immune selection in hepatocyte evolution and HCC will require, first of all, an assay with a greater ability to detect clonally expanded hepatocytes. The present approach is limited by a number of factors, including a need for integration near a particular restriction endonuclease cleavage site in host DNA and for conservation of particular viral sequences so that the integrated DNA can be amplified using the PCR primers chosen. These issues may explain why the fraction of clonally expanded hepatocytes reported here is much less than that suggested by histologic data showing that more than 50% of hepatocytes appear negative for virus replication in long-term carriers. Further dissection of this issue will also require localization and determination of the virologic status of hepatocyte clones present in tissue sections.  相似文献   
132.
133.
The structures of two forms of a recombinant flavoprotein have been determined at high resolution and compared. These proteins are (1) the flavocytochrome c p-cresol methylhydroxylase (rPCMH, 1.85 A resolution) and (2) the cytochrome-free flavoprotein subunit of rPCMH (PchF, 1.30 A resolution). A significant conformational difference is observed in a protein segment that is in contact with the re face of the isoalloxazine ring of FAD when the structure of PchF is compared to the subunit in the intact flavocytochrome. This structural change is important for optimum catalytic function of the flavoprotein, which has been shown to be dependent on the presence of the cytochrome subunit. This change results in different protein-flavin and apparently different protein-substrate interactions that have a "tuning effect" on the electronic and redox properties of bound p-cresol and the covalently bound FAD. The conformational change in the segment in the cofactor-binding site is induced by a small rearrangement in the flavoprotein-cytochrome interface region of the flavoprotein.  相似文献   
134.
135.
Aphids are intimately linked with their host plants that constitute their only food resource and habitat, and thus impose considerable selective pressure on their evolution. It is therefore commonly assumed that host plants have greatly influenced the diversification of aphids. Here, we review what is known about the role of host plant association on aphid speciation by examining both macroevolutionary and population-level studies. Phylogenetic studies conducted at different taxonomic levels show that, as in many phytophagous insect groups, the radiation of angiosperms has probably favoured the major Tertiary diversification of aphids. These studies also highlight many aphid lineages constrained to sets of related host plants, suggesting strong evolutionary commitment in aphids’ host plant choice, but they fail to document cospeciation events between aphid and host lineages. Instead, phylogenies of several aphid genera reveal that divergence events are often accompanied by host shifts, and suggest, without constituting a formal demonstration, that aphid speciation could be a consequence of adaptation to new hosts. Experimental and field studies below the species level support reproductive isolation between host races as partly due to divergent selection by their host plants. Selected traits are mainly feeding performances and life cycle adaptations to plant phenology. Combined with behavioural preference for favourable host species, these divergent adaptations can induce pre- and post-zygotic barriers between host-specialized aphid populations. However, the hypothesis of host-driven speciation is seldom tested formally and must be weighed against overlooked explanations involving geographic isolation and non-ecological reproductive barriers in the process of speciation.  相似文献   
136.
A microarray has been designed using 62,358 probes matched to both prokaryotic and eukaryotic small-subunit ribosomal RNA genes. The array categorized environmental DNA to specific phylogenetic clusters in under 9 h. To a background of DNA generated from natural outdoor aerosols, known quantities of rRNA gene copies from distinct organisms were added producing corresponding hybridization intensity scores that correlated well with their concentrations (r=0.917). Reproducible differences in microbial community composition were observed by altering the genomic DNA extraction method. Notably, gentle extractions produced peak intensities for Mycoplasmatales and Burkholderiales, whereas a vigorous disruption produced peak intensities for Vibrionales, Clostridiales, and Bacillales.  相似文献   
137.
Physical and chemical parameters of iridescent virus type 29, isolated from the mealworm, Tenebrio molitor, have been analyzed. The icosahedral capsid is 130–135 nm in diameter and is surrounded by a fringe of coarse filaments. The virus has a buoyant density in CsCl of 1.31 g cm?3 and contains 20 to 25 structural proteins as analyzed by isoelectric focusing and SDS-polyacrylamide gel electrophoresis. The DNA has a buoyant density in CsCl of 1.6874 g cm?3 indicating a G + C content of approximately 28%. The lipid components of this virus differ from those of the host cell; the virus contains about 80% cardiolipin and 20% phosphatidyl choline.  相似文献   
138.
The three-dimensional structure of the quinoprotein methylamine dehydrogenase from Paracoccus dentrificans (PD-MADH) has been determined at 2.8 A resolution by the molecular replacement method combined with map averaging procedures, using data collected from an area detector. The structure of methylamine dehydrogenase from Thio-bacillus versutus, which contains an "X-ray" sequence, was used as the starting search model. MADH consists of 2 heavy (H) and 2 light (L) subunits related by a molecular 2-fold axis. The H subunit is folded into seven four-stranded beta segments, forming a disk-shaped structure, arranged with pseudo-7-fold symmetry. A 31-residue elongated tail exists at the N-terminus of the H subunit in MADH from T. versutus but is partially digested in this crystal form of MADH from P. denitrificans, leaving the H subunit about 18 residues shorter. Each L subunit contains 127 residues arranged into 10 beta-strands connected by turns. The active site of the enzyme is located in the L subunit and is accessible via a hydrophobic channel between the H and L subunits. The redox cofactor of MADH, tryptophan tryptophylquinone is highly unusual. It is formed from two covalently linked tryptophan side chains at positions 57 and 107 of the L subunit, one of which contains an orthoquinone.  相似文献   
139.
140.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号