全文获取类型
收费全文 | 5316篇 |
免费 | 508篇 |
国内免费 | 1篇 |
专业分类
5825篇 |
出版年
2022年 | 30篇 |
2021年 | 56篇 |
2020年 | 36篇 |
2019年 | 45篇 |
2018年 | 43篇 |
2017年 | 48篇 |
2016年 | 104篇 |
2015年 | 173篇 |
2014年 | 169篇 |
2013年 | 252篇 |
2012年 | 325篇 |
2011年 | 374篇 |
2010年 | 230篇 |
2009年 | 206篇 |
2008年 | 287篇 |
2007年 | 346篇 |
2006年 | 305篇 |
2005年 | 329篇 |
2004年 | 330篇 |
2003年 | 301篇 |
2002年 | 329篇 |
2001年 | 75篇 |
2000年 | 57篇 |
1999年 | 94篇 |
1998年 | 84篇 |
1997年 | 70篇 |
1996年 | 61篇 |
1995年 | 53篇 |
1994年 | 61篇 |
1993年 | 60篇 |
1992年 | 57篇 |
1991年 | 44篇 |
1990年 | 43篇 |
1989年 | 44篇 |
1988年 | 41篇 |
1987年 | 41篇 |
1986年 | 39篇 |
1985年 | 36篇 |
1984年 | 50篇 |
1983年 | 40篇 |
1982年 | 44篇 |
1981年 | 45篇 |
1980年 | 35篇 |
1979年 | 33篇 |
1978年 | 37篇 |
1977年 | 38篇 |
1976年 | 36篇 |
1975年 | 24篇 |
1973年 | 38篇 |
1972年 | 26篇 |
排序方式: 共有5825条查询结果,搜索用时 15 毫秒
41.
Identification of the sequences required for chromosomal replicator function in Kluyveromyces lactis
Irene C Maciariello C Cioci F Camilloni G Newlon CS Fabiani L 《Molecular microbiology》2004,51(5):1413-1423
The analysis of replication intermediates of a Kluyveromyces lactis chromosomal autonomous replicating sequence (ARS), KARS101, has shown that it is active as a chromosomal replicator. KARS101 contains a 50 bp sequence conserved in two other K. lactis ARS elements. The deletion of the conserved sequence in KARS101 completely abolished replicator activity, in both the plasmids and the chromosome. Gel shift assays indicated that this sequence binds proteins present in K. lactis nuclear extracts, and a 40 bp sequence, previously defined as the core essential for K. lactis ARS function, is required for efficient binding. Reminiscent of the origin replication complex (ORC), the binding appears to be ATP dependent. A similar pattern of protection of the core was seen with in vitro footprinting. KARS101 also functions as an ARS sequence in Saccharomyces cerevisiae. A comparative study using S. cerevisiae nuclear extracts revealed that the sequence required for binding is a dodecanucleotide related to the S. cerevisiae ARS consensus sequence and essential for S. cerevisiae ARS activity. 相似文献
42.
Rutherford NJ Zhang YJ Baker M Gass JM Finch NA Xu YF Stewart H Kelley BJ Kuntz K Crook RJ Sreedharan J Vance C Sorenson E Lippa C Bigio EH Geschwind DH Knopman DS Mitsumoto H Petersen RC Cashman NR Hutton M Shaw CE Boylan KB Boeve B Graff-Radford NR Wszolek ZK Caselli RJ Dickson DW Mackenzie IR Petrucelli L Rademakers R 《PLoS genetics》2008,4(9):e1000193
The TAR DNA-binding protein 43 (TDP-43) has been identified as the major disease protein in amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration with ubiquitin inclusions (FTLD-U), defining a novel class of neurodegenerative conditions: the TDP-43 proteinopathies. The first pathogenic mutations in the gene encoding TDP-43 (TARDBP) were recently reported in familial and sporadic ALS patients, supporting a direct role for TDP-43 in neurodegeneration. In this study, we report the identification and functional analyses of two novel and one known mutation in TARDBP that we identified as a result of extensive mutation analyses in a cohort of 296 patients with variable neurodegenerative diseases associated with TDP-43 histopathology. Three different heterozygous missense mutations in exon 6 of TARDBP (p.M337V, p.N345K, and p.I383V) were identified in the analysis of 92 familial ALS patients (3.3%), while no mutations were detected in 24 patients with sporadic ALS or 180 patients with other TDP-43-positive neurodegenerative diseases. The presence of p.M337V, p.N345K, and p.I383V was excluded in 825 controls and 652 additional sporadic ALS patients. All three mutations affect highly conserved amino acid residues in the C-terminal part of TDP-43 known to be involved in protein-protein interactions. Biochemical analysis of TDP-43 in ALS patient cell lines revealed a substantial increase in caspase cleaved fragments, including the approximately 25 kDa fragment, compared to control cell lines. Our findings support TARDBP mutations as a cause of ALS. Based on the specific C-terminal location of the mutations and the accumulation of a smaller C-terminal fragment, we speculate that TARDBP mutations may cause a toxic gain of function through novel protein interactions or intracellular accumulation of TDP-43 fragments leading to apoptosis. 相似文献
43.
44.
45.
46.
Alison M. Berry James R. Thayer Carol S. Enderlin A. Daniel Jones 《Archives of microbiology》1990,154(5):510-513
Nitrogen-starved cells of Frankia strain HFPArl3 incorporated [13N]-labeled ammonium into glutamine serine (glutamate, alanine, aspartate), after five-minute radioisotope exposures. High initial endogenous pools of glutamate were reduced, while total glutamine increased, during short term NH
inf4
sup+
incubation. Preincubation of cells in methionine sulfoximine (MSX) resulted in [13N]glutamine reduced by more than 80%, while [13N]glutamate and [13N]alanine levels increased. The results suggest that glutamine synthetase is the primary enzyme of ammonium assimilation, and that glutamate dehydrogenase and alanine dehydrogenase may also function in ammonium assimilation at low levels. Efflux of [13N]serine and lesser amounts of [13N]glutamine was detected from the Frankia cells. The identity of both Ser and Gln in the extracellular compartment was confirmed with gas chromatography/mass spectrometry. Serine efflux may be of significance in nitrogen transfer in Frankia.Abbreviations Pthr
phosphothreonine
- Aad
-amino-adipate
- MSX
methionine sulfoximine 相似文献
47.
Summary Caffeine is a potent inhibitor of cell plate formation in dividing plant cells. Previous studies living cells reveal that the drug always permits the cell plate to arise and grow normally until about 80% complete, but then causes it to break down. In the present investigation we examine this formation/degradation cycle at the ultrastructure level. Our results show that during the formation phase the caffeine treated plate is indistinguishable from untreated controls. Phragmoplast microtubules arise and align in the interzone, Golgi vesicles are produced and aggregate in a line that defines the young cell plate, and considerable fusion of these vesicles occurs to form islands of plate material. However, under the influence of caffeine these islands do not fuse to form the enlarged lamellar expanses characteristic of maturing cell plates. Instead, the partially fused material reverts to small vesicles which appear to become resorbed by the cellular membrane systems. The resorption process continues leaving no evidence of the previously developing plate, although occasionally we observe a stub of fused vesicles attached to the parent wall. Following cell plate disintegration the reformed nuclei move close together and occupy the central region of the cell. These observations focus attention on the consolidation phase of cell plate formation as the one being maximally affected by caffeine.Dedicated to the memory of Professor Oswald Kiermayer 相似文献
48.
CB Jonsson JV Camp A Wu H Zheng JL Kraenzle AE Biller CD Vanover YK Chu CK Ng M Proctor L Sherwood MC Steffen DJ Mollura 《PloS one》2012,7(7):e40094
Molecular imaging has gained attention as a possible approach for the study of the progression of inflammation and disease dynamics. Herein we used [18F]-2-deoxy-2-fluoro-D-glucose ([18F]-FDG) as a radiotracer for PET imaging coupled with CT (FDG-PET/CT) to gain insight into the spatiotemporal progression of the inflammatory response of ferrets infected with a clinical isolate of a pandemic influenza virus, H1N1 (H1N1pdm). The thoracic regions of mock- and H1N1pdm-infected ferrets were imaged prior to infection and at 1, 2, 3 and 6 days post-infection (DPI). On 1 DPI, FDG-PET/CT imaging revealed areas of consolidation in the right caudal lobe which corresponded with elevated [18F]-FDG uptake (maximum standardized uptake values (SUVMax), 4.7–7.0). By days 2 and 3, consolidation (CT) and inflammation ([18F]-FDG) appeared in the left caudal lobe. By 6 DPI, CT images showed extensive areas of patchy ground-glass opacities (GGO) and consolidations with the largest lesions having high SUVMax (6.0–7.6). Viral shedding and replication were detected in most nasal, throat and rectal swabs and nasal turbinates and lungs on 1, 2 and 3 DPI, but not on day 7, respectively. In conclusion, molecular imaging of infected ferrets revealed a progressive consolidation on CT with corresponding [18F]-FDG uptake. Strong positive correlations were measured between SUVMax and bronchiolitis-related pathologic scoring (Spearman’s ρ = 0.75). Importantly, the extensive areas of patchy GGO and consolidation seen on CT in the ferret model at 6 DPI are similar to that reported for human H1N1pdm infections. In summary, these first molecular imaging studies of lower respiratory infection with H1N1pdm show that FDG-PET can give insight into the spatiotemporal progression of the inflammation in real-time. 相似文献
49.
50.
Nearest neighbor analysis of immunocytolocalization experiments indicates that the enzymes glyceraldehyde-3-P dehydrogenase, triose-P isomerase and aldolase are located close to one another in the pea leaf chloroplast stroma, and that aldolase is located close to sedoheptulose bisphosphatase. Direct transfer of the triose phosphates between glyceraldehyde-3-P dehydrogenase and triose-P isomerase, and from glyceraldehyde-3-P dehydrogenase and triose-P isomerase to aldolase, is then a possibility, as is direct transfer of sedoheptulose bisphosphate from aldolase to sedoheptulose bisphosphatase. Spatial organization of these enzymes may be important for efficient CO2 fixation in photosynthetic organisms. In contrast, there is no indication that fructose bisphosphatase is co-localized with aldolase, and direct transfer of fructose bisphosphate from aldolase to fructose bisphosphatase seems unlikely. 相似文献