首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5439篇
  免费   517篇
  国内免费   1篇
  5957篇
  2022年   32篇
  2021年   59篇
  2020年   40篇
  2019年   48篇
  2018年   43篇
  2017年   53篇
  2016年   114篇
  2015年   183篇
  2014年   182篇
  2013年   252篇
  2012年   326篇
  2011年   377篇
  2010年   233篇
  2009年   208篇
  2008年   290篇
  2007年   347篇
  2006年   300篇
  2005年   330篇
  2004年   323篇
  2003年   296篇
  2002年   327篇
  2001年   69篇
  2000年   58篇
  1999年   95篇
  1998年   86篇
  1997年   70篇
  1996年   65篇
  1995年   58篇
  1994年   64篇
  1993年   62篇
  1992年   54篇
  1991年   45篇
  1990年   49篇
  1989年   51篇
  1988年   49篇
  1987年   46篇
  1986年   39篇
  1985年   39篇
  1984年   53篇
  1983年   41篇
  1982年   49篇
  1981年   49篇
  1980年   39篇
  1979年   38篇
  1978年   37篇
  1977年   38篇
  1976年   38篇
  1974年   24篇
  1973年   39篇
  1972年   25篇
排序方式: 共有5957条查询结果,搜索用时 15 毫秒
951.
952.
Aldolase C, also known as Zebrin II (ZII), is a glycolytic enzyme that is expressed in cerebellar Purkinje cells of the vertebrate cerebellum. In both mammals and birds, ZII is expressed heterogeneously, such that there are sagittal stripes of Purkinje cells with high ZII expression (ZII+), alternating with stripes of Purkinje cells with little or no expression (ZII-). The patterns of ZII+ and ZII- stripes in the cerebellum of birds and mammals are strikingly similar, suggesting that it may have first evolved in the stem reptiles. In this study, we examined the expression of ZII in the cerebellum of the western diamondback rattlesnake (Crotalus atrox). In contrast to birds and mammals, the cerebellum of the rattlesnake is much smaller and simpler, consisting of a small, unfoliated dome of cells. A pattern of alternating ZII+ and ZII- sagittal stripes cells was not observed: rather all Purkinje cells were ZII+. This suggests that ZII stripes have either been lost in snakes or that they evolved convergently in birds and mammals.  相似文献   
953.
954.
955.
Snake fungal disease (SFD) is a clinical syndrome associated with dermatitis, myositis, osteomyelitis, and pneumonia in several species of free-ranging snakes in the US. The causative agent has been suggested as Ophidiomyces ophiodiicola, but other agents may contribute to the syndrome and the pathogenesis is not understood. To understand the role of O. ophiodiicola in SFD, a cottonmouth snake model of SFD was designed. Five cottonmouths (Agkistrodon piscivorous) were experimentally challenged by nasolabial pit inoculation with a pure culture of O. ophiodiicola. Development of skin lesions or facial swelling at the site of inoculation was observed in all snakes. Twice weekly swabs of the inoculation site revealed variable presence of O. ophiodiicola DNA by qPCR in all five inoculated snakes for 3 to 58 days post-inoculation; nasolabial flushes were not a useful sampling method for detection. Inoculated snakes had a 40% mortality rate. All inoculated snakes had microscopic lesions unilaterally on the side of the swabbed nasolabial pit, including erosions to ulcerations and heterophilic dermatitis. All signs were consistent with SFD; however, the severity of lesions varied in individual snakes, and fungal hyphae were only observed in 3 of 5 inoculated snakes. These three snakes correlated with post-mortem tissue qPCR evidence of O. ophiodiicola. The findings of this study conclude that O. ophiodiicola inoculation in a cottonmouth snake model leads to disease similar to SFD, although lesion severity and the fungal load are quite variable within the model. Future studies may utilize this model to further understand the pathogenesis of this disease and develop management strategies that mitigate disease effects, but investigation of other models with less variability may be warranted.  相似文献   
956.
957.
958.
DQ 65-79, a peptide derived from residues 65-79 of the alpha-chain HLA class II molecule DQA03011, blocks T cell proliferation and induces T cell apoptosis. Using a yeast two-hybrid assay, we previously identified proliferating cell nuclear Ag (PCNA) as an intracellular ligand for DQ 65-79. In this study, we show that three regions of PCNA, residues 81-100, 121-140, and 241-261, interact with DQ 65-79. Residues 241-261 of PCNA also interact with the C terminus (residues 139-160) of the cell cycle regulator, p21, suggesting that DQ 65-79 and p21 might function similarly. We show here that DQ 65-79 competitively inhibits binding of p21 to PCNA and that both DQ 65-79 and p21 139-160 induce T cell apoptosis, suggesting that DQ 65-79 and p21 act similarly to inhibit cell growth.  相似文献   
959.
Cannabinoid 1 receptor (CB1R) inverse agonists are emerging as a potential obesity therapy. However, the physiological mechanisms by which these agents modulate human energy balance are incompletely elucidated. Here, we describe a comprehensive clinical research study of taranabant, a structurally novel acyclic CB1R inverse agonist. Positron emission tomography imaging using the selective CB1R tracer [(18)F]MK-9470 confirmed central nervous system receptor occupancy levels ( approximately 10%-40%) associated with energy balance/weight-loss effects in animals. In a 12-week weight-loss study, taranabant induced statistically significant weight loss compared to placebo in obese subjects over the entire range of evaluated doses (0.5, 2, 4, and 6 mg once per day) (p < 0.001). Taranabant treatment was associated with dose-related increased incidence of clinical adverse events, including mild to moderate gastrointestinal and psychiatric effects. Mechanism-of-action studies suggest that engagement of the CB1R by taranabant leads to weight loss by reducing food intake and increasing energy expenditure and fat oxidation.  相似文献   
960.
Glasshouse trials, using trickle irrigation and increasing levels of NaOH-induced alkalinity, identified species that could be expected to tolerate the high-pH conditions of bauxite processing waste residue sites. Of 29 taxa tested, the most tolerant were Casuarina obesa, Melaleuca lanceolata, M. armillaris, M. nesophila, Eucalyptus loxophleba, E. halophila, E. platypus, Tamarix aphylla, and a particular clone of E. camaldulensis; E. spathulata, E. tetragona, E. preissiana, E. gomphocephala, E. diptera, and E. occidentalis proved to be relatively sensitive to severe alkaline conditions. Tolerance appeared to relate to an ability to maintain root membrane function, nutrient uptake balance, and ultimately root tissue structure while under increasing levels of alkalinity stress. Species normally inhabiting alkaline soils tended to have increased growth rates in nutrient irrigation conditions between pH 8 and 10 compared with control plants irrigated with nutrient solutions of pH values near 7.4. However, once the irrigation solutions reached pH 12 and the buffering capacity of the soil appeared to be exceeded, the condition of susceptible plants rapidly declined and death followed. Sensitive plants initially showed symptoms related to nutrient deficiency, followed by wilting and death as the root systems failed. Field trial conditions in the bauxite residue impoundments at Kwinana, Western Australia, include soils with pH values as high as 11.00. In general, the relative survival and growth of seedlings after eight months were predicted by the response under glasshouse trial conditions. Appropriately designed stress trials can be important ecological techniques in choosing species most capable of surviving difficult environmental conditions in the rehabilitation of damaged landscapes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号