首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5217篇
  免费   516篇
  国内免费   1篇
  2022年   31篇
  2021年   56篇
  2020年   35篇
  2019年   45篇
  2018年   43篇
  2017年   50篇
  2016年   101篇
  2015年   179篇
  2014年   170篇
  2013年   244篇
  2012年   321篇
  2011年   361篇
  2010年   221篇
  2009年   200篇
  2008年   282篇
  2007年   335篇
  2006年   305篇
  2005年   321篇
  2004年   325篇
  2003年   298篇
  2002年   328篇
  2001年   70篇
  2000年   50篇
  1999年   86篇
  1998年   83篇
  1997年   74篇
  1996年   62篇
  1995年   53篇
  1994年   65篇
  1993年   63篇
  1992年   53篇
  1991年   40篇
  1990年   42篇
  1989年   44篇
  1988年   44篇
  1987年   44篇
  1986年   36篇
  1985年   35篇
  1984年   52篇
  1983年   39篇
  1982年   43篇
  1981年   46篇
  1980年   36篇
  1979年   29篇
  1978年   35篇
  1977年   36篇
  1976年   36篇
  1974年   23篇
  1973年   39篇
  1972年   25篇
排序方式: 共有5734条查询结果,搜索用时 34 毫秒
971.
972.
973.
Mass spectrometry not only plays a crucial role in the identification of proteins involved in the intricate interaction networks of the cell, but also is increasingly involved in the characterization of the non-covalent complexes formed by interacting partners. Recent developments have enabled the use of gas phase dissociation to probe oligomeric organization and topology, and increased understanding of the electrospray process is leading to knowledge of the structure of protein assemblies both in solution and in the gas phase.  相似文献   
974.
The divergence of sequence and expression pattern of duplicated genes provides a means for genetic innovation to occur without sacrificing an essential function. The cpx1 and cpx2 genes of maize are a singular example of duplicated genes that have diverged by deletion and creation of protein targeting information. The cpx genes encode coproporphyrinogen III oxidase ('coprogen oxidase'), which catalyzes a step in the synthesis of chlorophyll and heme. In plants, this enzyme has been found exclusively in the plastids. The cpx1 and cpx2 genes encode almost identical, catalytically active enzymes with distinctive N-terminal peptide sequences. The cpx1 gene encodes the expected plastid transit peptide, but this region is deleted from the cpx2 gene. While the 5' regions of both messenger RNAs are highly similar, the cpx2 gene has an open-reading frame that could encode a new targeting signal. GFP fused with CPX1 localized to the plastids. In contrast, the GFP fusion with CPX2 did not target plastids and appeared to localize to mitochondria. Both cpx genes are expressed ubiquitously but, based on mutant phenotype, they seem to have discrete biological roles. Seedlings homozygous for a null mutation in the cpx1 gene completely lack chlorophyll and develop necrotic lesions in the light. However, the mutant seedlings and callus cultures will grow in tissue culture in the dark, implying that they retain a capacity to produce heme. We discuss models for the evolution of the cpx genes and possible roles of mitochondrion-localized coprogen oxidase activity in maize.  相似文献   
975.
CONSTANS-Like (COL) proteins are plant-specific nuclear regulators of gene expression but do not contain a known DNA-binding motif. We tested whether a common DNA-binding protein can deliver these proteins to specific cis-acting elements. We screened for proteins that interact with two members of a subgroup of COL proteins. These COL proteins were Tomato COL1 (TCOL1), which does not seem to be involved in the control of flowering time, and the Arabidopsis thaliana CONSTANS (AtCO) protein which mediates photoperiodic induction of flowering. We show that the C-terminal plant-specific CCT (CO, CO-like, TIMING OF CAB EXPRESSION 1) domain of both proteins binds the trimeric CCAAT binding factor (CBF) via its HAP5/NF-YC component. Chromatin immunoprecipitation demonstrated that TCOL is recruited to the CCAAT motifs of the yeast CYC1 and HEM1 promoters by HAP5. In Arabidopsis, each of the three CBF components is encoded by several different genes that are highly transcribed. Under warm long days, high levels of expression of a tomato HAP5 (THAP5a) gene can reduce the flowering time of Arabidopsis. A mutation in the CCT domain of TCOL1 disrupts the interaction with THAP5 and the analogous mutation in AtCO impairs its function and delays flowering. CBFs are therefore likely to recruit COL proteins to their DNA target motifs in planta.  相似文献   
976.
A new series of potent 8-hydroxyquinolines was designed based on the newly resolved X-ray crystal structure of EGLN-1. Both alkyl and aryl 8-hydroxyquinoline-7-carboxyamides were good HIF-1alpha prolyl hydroxylase (EGLN) inhibitors. In subsequent VEGF induction assays, these exhibited potent VEGF activity. In addition, this class of compounds did show the ability to stabilize HIF-1alpha.  相似文献   
977.
Structure-activity relationship (SAR) studies of novel 2-[3-trifluoromethyl-5-alkyl(thio)ether pyrazo-1-yl]-5-methanesulfonyl pyridine derivatives for canine COX enzymes are described. The 4-cyano-5-alkyl ethers were found to have excellent potency and selectivity, whereas the 5-thioethers were potent but less selective than the ether analogs in a canine whole blood (CWB) COX-2 assay.  相似文献   
978.
Structure-activity relationship (SAR) studies of the novel 2-[3-di and trifluoromethyl-5-alkylamino pyrazo-1-yl]-5-methanesulfonyl (SO(2)Me)/sulfamoyl (SO(2)NH(2))-pyridine derivatives for canine COX enzymes are described. The studies led to the identification of 2e as lead with potent in vitro activity, selectivity, and in vivo activity in dogs and cats.  相似文献   
979.
In vivo, 2-keto-3-deoxy-6-phosphogluconate (KDPG) aldolase catalyzes the reversible, stereospecific retro-aldol cleavage of KDPG to pyruvate and D-glyceraldehyde-3-phosphate. The enzyme is a lysine-dependent (Class I) aldolase that functions through the intermediacy of a Schiff base. Here, we propose a mechanism for this enzyme based on crystallographic studies of wild-type and mutant aldolases. The three dimensional structure of KDPG aldolase from the thermophile Thermotoga maritima was determined to 1.9A. The structure is the standard alpha/beta barrel observed for all Class I aldolases. At the active site Lys we observe clear density for a pyruvate Schiff base. Density for a sulfate ion bound in a conserved cluster of residues close to the Schiff base is also observed. We have also determined the structure of a mutant of Escherichia coli KDPG aldolase in which the proposed general acid/base catalyst has been removed (E45N). One subunit of the trimer contains density suggesting a trapped pyruvate carbinolamine intermediate. All three subunits contain a phosphate ion bound in a location effectively identical to that of the sulfate ion bound in the T. maritima enzyme. The sulfate and phosphate ions experimentally locate the putative phosphate binding site of the aldolase and, together with the position of the bound pyruvate, facilitate construction of a model for the full-length KDPG substrate complex. The model requires only minimal positional adjustments of the experimentally determined covalent intermediate and bound anion to accommodate full-length substrate. The model identifies the key catalytic residues of the protein and suggests important roles for two observable water molecules. The first water molecule remains bound to the enzyme during the entire catalytic cycle, shuttling protons between the catalytic glutamate and the substrate. The second water molecule arises from dehydration of the carbinolamine and serves as the nucleophilic water during hydrolysis of the enzyme-product Schiff base. The second water molecule may also mediate the base-catalyzed enolization required to form the carbon nucleophile, again bridging to the catalytic glutamate. Many aspects of this mechanism are observed in other Class I aldolases and suggest a mechanistically and, perhaps, evolutionarily related family of aldolases distinct from the N-acetylneuraminate lyase (NAL) family.  相似文献   
980.
Adeno-associated virus type 2 (AAV-2) capsid proteins have eight sequence motifs that are potential sites for O- or N-linked glycosylation. Three are in prominent surface locations, close to the sites of cellular receptor attachment and to neutralizing epitopes on or near protrusions surrounding the three-fold axes, raising the possibility that AAV-2 might use glycosylation as a means of immune escape or for preventing reattachment on release of progeny virus. Peptide mapping and structural analysis by Fourier transform ion cyclotron resonance mass spectrometry demonstrates, however, no glycosylation of the capsid protein for virus prepared in cultured HeLa cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号