首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5210篇
  免费   516篇
  国内免费   1篇
  2022年   25篇
  2021年   56篇
  2020年   35篇
  2019年   45篇
  2018年   43篇
  2017年   50篇
  2016年   101篇
  2015年   179篇
  2014年   170篇
  2013年   244篇
  2012年   321篇
  2011年   361篇
  2010年   221篇
  2009年   200篇
  2008年   282篇
  2007年   335篇
  2006年   305篇
  2005年   321篇
  2004年   325篇
  2003年   298篇
  2002年   328篇
  2001年   70篇
  2000年   50篇
  1999年   86篇
  1998年   83篇
  1997年   74篇
  1996年   62篇
  1995年   53篇
  1994年   65篇
  1993年   63篇
  1992年   53篇
  1991年   40篇
  1990年   42篇
  1989年   44篇
  1988年   44篇
  1987年   44篇
  1986年   36篇
  1985年   35篇
  1984年   52篇
  1983年   39篇
  1982年   43篇
  1981年   46篇
  1980年   36篇
  1979年   29篇
  1978年   35篇
  1977年   36篇
  1976年   36篇
  1974年   23篇
  1973年   39篇
  1972年   25篇
排序方式: 共有5727条查询结果,搜索用时 15 毫秒
41.
Summary Five oligomycin-resistant (oli r) mutant strains of Neurospora crassa were analyzed for their growth rate and for the periodicity of their circadian rhythm. The most resistant strains had periods of 18–19 h while the least resistant strain had a normal period of 21.0 h. There was a rough correlation between the in vivo degree of oligomycinresistance and the amount of change in the period. Several of the oli r mutations have been previously described by Sebald et al. (1977) in terms of known amino acid changes in the primary structure of the proteolipid, or DCCD-binding protein, found in the F0 membrane portion of the mitochondrial ATP synthetase. Amino acid changes in the structure of this protein are reported here for two other oli r mutations. The proteolipid isolation procedures were slightly modified to include a delipidation step, and an HPLC procedure was developed to separate the hydrophobic peptides of this protein. Analysis of heterocaryons carrying both the oli r and oli s markers indicated that the oli r and oli s mutations were codominant to each other in terms of period and growth rate. The changes in the primary structure of this DCCD-binding protein reported here are the first known examples of changes in the primary structure of a protein which alter the period of a circadian rhythm.  相似文献   
42.
Summary A histochemical account is presented of the changes that occur in the protein—carbohydrate composition of the cumulus—oocyte complex in immature mice after gonadotrophin treatment. The distribution and nature of the glycosaminoglycans (GAG) present was established by enzymic digestion of tissue sections with testicular orStreptomyces hyaluronidase prior to staining with periodic—acid Schiff (PAS) or Alcian Blue. Treatment with exogenous gonadotrophins [pregnant mare's serum and human chorionic gonadotrophin (hCG)] induced gross changes in the appearance of the zona pellucida (and in the histochemical staining of the cumulus—oocyte complex). A reduction was observed in the amount of PAS-positive material present within the zona pellucida of oocytes located in large Graafian follicles examined 40 h after stimulation with pregnant mare's serum. After the injection of hCG, the zona pellucida was further depleted of PAS-positive naterial. Most of the PAS-positive material became confined to the plasma membrane of the oocyte, while the oocyte itself also became increasingly PAS-positive. All the GAGs disappeared from zona pellucida within 4 h of hCG stimulation. The changes observed in the protein—carbohydrate composition of the zona pellucida in preovulatory oocytes immediately prior to ovulation may be a prerequisite for successful sperm-egg interactions.  相似文献   
43.
Utilizing the method of P-M hybrid dysgenesis-mediated gene transfer to insert rosy locus DNA into various chromosomal locations, we recovered a transformed strain that carries an ry+ transposon inserted in or near the scalloped locus in polytene section 13F on the X chromosome. The resultant product, when stabilized, behaves as a homozygous and hemizygous viable and fertile extreme scalloped allele associated with wild-type expression of the rosy locus. We have labeled this allele, sdry+. This allele has been destabilized by subsequent P-M hybrid dysgenesis, and mutations were recovered that exhibit alterations in the rosy and/or scalloped phenotypes. Representative samples of all phenotypic classes have been characterized by Southern blot analyses of restricted DNA. The most common events are excisions of DNA wholly internal to the transposon and representing sections of rosy DNA. In addition to loss of rosy locus function, such excisions affect the scalloped locus expression.--A second dysgenesis experiment was carried out involving an ry+ transposon inserted in polytene section 16D on the X chromosome. A minimal estimate of the relative frequency of imprecise excisions, determined in this experiment is 75%.--A successful pilot experiment is described that utilizes dysgenic perturbation of the sdry+ allele to select for small deletions of the 5' noncoding region of the rosy locus.  相似文献   
44.
We evaluated in a double-blind study the bronchodilatory properties of 2-decarboxy-2-hydroxymethyl prostaglandin E1 (PGE1-carbinol), described recently as a nonirritant bronchodilator in animals. Fifteen asthmatic patients received by inhalation single doses of 1, 10, and 30 μg PGE1-carbinol, 55 μg PGE2, and placebo (10% ethanol in normal saline, which was also used as diluent for the PGs). Such pulmonary function tests as forced expiratory volume in 1 second, forced vital capacity, and maximal expiratory flow were monitored during 2 hours following inhalation of each compound. 10 and 30 μg PGE1-carbinol produced significant but short-acting bronchodilation, similar to that caused by 55 μg PGE2. One-third of the patients reported mild cough and throat irritation during and shortly after inhalation of 30 μg PGE1-carbinol or 55 μg PGE2. Placebo and 1 μg PGE1-carbinol produced minimal side effects, but neither agent caused bronchodilation. In an adjunctive, unblinded trial, the same patients received 400 μg fenoterol. Fenoterol caused greater bronchodilation 15 and 30 minutes after inhalation than did the PGs in the double-blind study.  相似文献   
45.
Summary The pre- and postnatal development of the adrenal medulla was examined in the rat by immunohistochemistry and by assay of catecholamines. Immunohistochemistry involved the use of antibodies to noradrenaline (NA), adrenaline (A) and the biosynthesizing enzymes dopamine -hydroxylase (DBH) and phenylethanolamine N-methyltransferase (PNMT). Adrenal glands were obtained from animals from the 16th day of gestation to the 7th postnatal day at daily intervals, and at the 14th postnatal day, and from adult rats. Tissues were fixed in ice-cold, 4% paraformaldehyde, buffered at pH 7.3. Cryostat sections (7 m) were stained with the indirect immunofluorescence technique. Adrenals from the same developmental stages were assayed for the presence of DA (dopamine), NA and A by ion-pair reversed-phase liquid chromatography with electrochemical detection.In adult adrenals the majority of the medullary cells (approximately 80%) were highly immunoreactive to A and moderately immunoreactive to NA. They also showed immunoreactivity to both DBH and PNMT, i.e., they are synthesizing and storing A. The remaining cell clusters were only stained by antibodies to DBH and NA (NA-synthesizing and -storing cells). These findings correlate well with the relative concentrations of A and NA as determined by assay.Three developmental phases could be distinguished. In the first phase, the 16th and 17th prenatal day, medullary cells were only immunoreactive to DBH and NA, and only very small amounts of A as compared to NA were found. During the second period, from the 18th prenatal day to 2 or 3 days after birth, all medullary cells were immunoreactive to DBH, NA, PNMT and A, and during this phase the adrenaline concentration increased daily and became the predominant amine on the 20th day of gestation. Adrenaline represented 75% of total catecholamine on the 1st to 3rd day after birth. The third phase started at the 2nd or 3rd postnatal day and was characterized by the presence of an increasing number of medullary cells solely immunoreactive to DBH and NA, hence synthesizing and storing NA. The remaining cells were immunoreactive to DBH, NA, PNMT and A. Postnatally, the relative concentration of A continued to rise reaching 79% by the 4th postnatal day. These results indicate that initially the adrenal medullary cells are synthesizing and storing almost exclusively NA. Probably, adrenaline synthesis begins at the 16th–17th day of gestation and the cells are then capable of synthesizing and storing both NA and A (mixed cell type) with A synthesis and storage rapidly becoming predominant. Finally, after birth, separate NA-synthesizing and -storing cell types are formed and the so-called A cells stored predominantly (probably >90%) adrenaline with a small proportion of noradrenaline.In the medullary blastema and in the sympathetic ganglia of prenatal animals two cell types, only immunoreactive to DBH and NA, were observed. Presumably, these cells represent developing sympathetic neurons and extra-adrenal chromaffin cells; the latter cell type occasionally invades the adrenal gland. Thus, prospective medullary cells are able to synthesize and store NA before they have made contact with the cortical blastema but A-synthesizing cells are found only within the adrenal gland.Low but significant amounts of DA were found in the adrenal before birth and during the first two postnatal weeks but in the adult animal this accounted for less than 0.1% of total catecholamine.Preliminary reports of this study were made to the American Association of Anatomists (Anat. Rec. 196; 196A, 1980), the Dutch Anatomical Society (Acta Morphol. Neerl. Scand. 19; 330, 1981, and the XIIIth Acta Endocrinologica Congress (Acta Endocrinol. 97: Suppl. 243, 285, 1981)  相似文献   
46.
Summary A pCM2 replicon derived by an N deletion from ::Tn9 which carries the imm434 immunity region is incompatible with some (but not all) IncP-1 plasmids. The imm pCM1 replicon does not show the same incompatibility behavior.  相似文献   
47.
48.
The pathways of assimilation of ammonium by pure cultures of symbiont-free Anthoceros punctatus L. and the reconstituted Anthoceros-Nostoc symbiotic association were determined from time-course (5–300 s) and inhibitor experiments using 13NH 4 + . The major product of assimilation after all incubation times was glutamine, whether the tissues were cultured with excess ammonium or no combined nitrogen. The 13N in glutamine was predominantly in the amide-nitrogen position. Formation of glutamine and glutamate by Anthoceros-Nostoc was strongly inhibited by either 1mM methionine sulfoximine (MSX) or 1 mM exogenous ammonium. These data are consistent with the assimilation of 13NH 4 + and formation of glutamate by the glutamine synthetase (EC 6.3.1.2)-glutamate synthase (EC 1.4.7.1) pathway in dinitrogen-grown Anthoceros-Nostoc. However, in symbiont-free Anthoceros, grown with 2.5 mM ammonium, formation of glutamine, but not glutamate, was decreased by either MSX or exogenous ammonium. These results indicate that during short incubation times ammonium is assimilated in nitrogenreplete Anthoceros by the activities of both glutamine synthetase and glutamate dehydrogenase (EC 1.4.1.2). In-vitro activities of glutamine synthetase were similar in nitrogen-replete Anthoceros and Anthoceros-Nostoc, indicating that the differences in the routes of glutamate formation were not based upon regulation of synthesis of the initial enzyme of the glutamine synthetase-glutamate synthase pathway. When symbiont-free Anthoceros was cultured for 2 d in the absence of combined nitrogen, total 13NH 4 + assimilation, and glutamine and glutamate formation in the presence of inhibitors, were similar to dinitrogen-grown Anthoceros-Nostoc. The routes of immediate (within 2 min) glutamate formation and ammonium assimilation in Anthoceros were apparently determined by the intracellular levels of ammonium; at low levels the glutamine synthetase-glutamate synthase pathway was predominant, while at high levels independent activities of both glutamine synthetase and glutamate dehydrogenase were expressed.  相似文献   
49.
Acceptor proteins for poly(adenosine diphosphoribosyl)ation were determined in resting human lymphocytes, in lymphocytes with N-methyl-N′-nitro-N-nitrosoguanidine-induced DNA damage and in lymphocytes stimulated to proliferate by phytohemagglutinin. Kinetic studies showed that the increase in ADP-ribosylation which occurred in response to N-methyl-N′-nitro-N-nitrosoguanidine (MNNG) treatment was greater in magnitude but more transient in duration than that which occurred in phytohemagglutinin-stimulated cells. Gel electrophoretic analyses revealed that MNNG treatment and phytohemagglutinin stimulation both caused an increase in ADP-ribosylation of poly(ADP-ribose) polymerase and core histones. In MNNG-treated cells, an increase in ADP-ribosylation of histone H1 was also observed. In contrast, phytohemagglutinin-stimulated cells showed no increase in ADP-ribosylation of histone H1. In MNNG-treated cells there was also ADP-ribosylation of a protein of molecular weight 62 000, while in phytohemagglutinin-stimulated cells there was a marked increase in ADP-ribosylation of a protein of molecular weight 96000. MNNG treatment of phytohemagglutinin-stimulated cells produced a pattern of ADP-ribosylation that appeared to be due to the combined effects of the individual treatments. 3-Aminobenzamide effectively inhibited ADP-ribosylation under all treatment conditions.  相似文献   
50.
Of 16 metal cations tested on agar medium, only copper and iron stimulated mycelial growth of Endothia parasitica in relatively high concentrations. Similarly enhanced growth was produced in high (32%) glucose concentrations and also when the fungus was grown on cellophane placed over the agar surface. E. parasitica secreted large amounts of oxalate that precipitated primarily as calcium oxalate at the periphery of the fungal colony, causing an opaque halo in the medium. Mycelial growth was retarded greatly when calcium oxalate accumulated, but retardation was reversed by copper and iron salts that prevented accumulation of the calcium oxalate crystals. E. parasitica grew well on media containing copper oxalate and copper-calcium oxalate but grew poorly with calcium oxalate as the carbon source and was inhibited by sodium oxalate in the medium. The specificity by which only copper and iron salts stimulated mycelial growth suggested that the metal and oxalate ions interact to form specific oxalate complexes that reverse the inhibition of simple oxalate salts. This probably accounts for enhanced growth in the presence of otherwise toxic levels of metals and oxalate. The stimulation did not occur in liquid cultures.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号