首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   787篇
  免费   51篇
  838篇
  2023年   9篇
  2022年   17篇
  2021年   20篇
  2020年   21篇
  2019年   25篇
  2018年   24篇
  2017年   32篇
  2016年   34篇
  2015年   56篇
  2014年   48篇
  2013年   66篇
  2012年   77篇
  2011年   64篇
  2010年   38篇
  2009年   30篇
  2008年   48篇
  2007年   35篇
  2006年   29篇
  2005年   19篇
  2004年   14篇
  2003年   20篇
  2002年   21篇
  2001年   15篇
  2000年   12篇
  1999年   10篇
  1998年   3篇
  1997年   3篇
  1996年   4篇
  1994年   3篇
  1993年   5篇
  1992年   3篇
  1991年   2篇
  1986年   1篇
  1984年   2篇
  1983年   1篇
  1982年   2篇
  1979年   2篇
  1974年   1篇
  1973年   1篇
  1972年   2篇
  1970年   1篇
  1968年   2篇
  1967年   1篇
  1966年   3篇
  1964年   2篇
  1963年   1篇
  1962年   1篇
  1957年   1篇
  1955年   1篇
  1951年   1篇
排序方式: 共有838条查询结果,搜索用时 0 毫秒
11.
Glioblastoma (GBM) is the most malignant primary brain tumor, with an average survival rate of 15 months. GBM is highly refractory to therapy, and such unresponsiveness is due, primarily, but not exclusively, to the glioma stem-like cells (GSCs). This subpopulation express stem-like cell markers and is responsible for the heterogeneity of GBM, generating multiple differentiated cell phenotypes. However, how GBMs maintain the balance between stem and non-stem populations is still poorly understood. We investigated the GBM ability to interconvert between stem and non-stem states through the evaluation of the expression of specific stem cell markers as well as cell communication proteins. We evaluated the molecular and phenotypic characteristics of GSCs derived from differentiated GBM cell lines by comparing their stem-like cell properties and expression of connexins. We showed that non-GSCs as well as GSCs can undergo successive cycles of gain and loss of stem properties, demonstrating a bidirectional cellular plasticity model that is accompanied by changes on connexins expression. Our findings indicate that the interconversion between non-GSCs and GSCs can be modulated by extracellular factors culminating on differential expression of stem-like cell markers and cell-cell communication proteins. Ultimately, we observed that stem markers are mostly expressed on GBMs rather than on low-grade astrocytomas, suggesting that the presence of GSCs is a feature of high-grade gliomas. Together, our data demonstrate the utmost importance of the understanding of stem cell plasticity properties in a way to a step closer to new strategic approaches to potentially eliminate GSCs and, hopefully, prevent tumor recurrence.  相似文献   
12.
In the present study, we hypothesized that endothelin (ET) receptors (ETA and ETB) stimulation, through increased calcium and ROS formation, leads to Nucleotide Oligomerization Domain‐Like Receptor Family, Pyrin Domain Containing 3 (NLRP3) activation. Intracavernosal pressure (ICP/MAP) was measured in C57BL/6 (WT) mice. Functional and immunoblotting assays were performed in corpora cavernosa (CC) strips from WT, NLRP3−/− and caspase−/− mice in the presence of ET‐1 (100 nM) and vehicle, MCC950, tiron, BAPTA AM, BQ123, or BQ788. ET‐1 reduced the ICP/MAP in WT mice, and MCC950 prevented the ET‐1 effect. ET‐1 decreased CC ACh‐, sodium nitroprusside (SNP)‐induced relaxation, and increased caspase‐1 expression. BQ123 an ETA receptor antagonist reversed the effect. The ETB receptor antagonist BQ788 also reversed ET‐1 inhibition of ACh and SNP relaxation. Additionally, tiron, BAPTA AM, and NLRP3 genetic deletion prevented the ET‐1‐induced loss of ACh and SNP relaxation. Moreover, BQ123 diminished CC caspase‐1 expression, while BQ788 increased caspase‐1 and IL‐1β levels in a concentration‐dependent manner (100 nM–10 μM). Furthermore, tiron and BAPTA AM prevented ET‐1‐induced increase in caspase‐1. In addition, BAPTA AM blocked ET‐1‐induced ROS generation. In conclusion, ET‐1‐induced erectile dysfunction depends on ETA‐ and ETB‐mediated activation of NLRP3 in mouse CC via Ca2+‐dependent ROS generation.  相似文献   
13.
In migratory systems, variation in individual phenology can arise through differences in individual migratory behaviors, and this may be particularly apparent in partial migrant systems, where migrant and resident individuals are present within the same population. Links between breeding phenology and migratory behavior or success are generally investigated at the individual level. However, for breeding phenology in particular, the migratory behaviors of each member of the pair may need to be considered simultaneously, as breeding phenology will likely be constrained by timing of the pair member that arrives last, and carryover effects on breeding success may vary depending on whether pair members share the same migratory behavior or not. We used tracking of marked individuals and monitoring of breeding success from a partially migrant population of Eurasian oystercatchers (Haematopus ostralegus) breeding in Iceland to test whether (a) breeding phenology varied with pair migratory behavior; (b) within‐pair consistency in timing of laying differed among pair migratory behaviors; and (c) reproductive performance varied with pair migratory behavior, timing of laying, and year. We found that annual variation in timing of laying differed among pair migratory behaviors, with resident pairs being more consistent than migrant and mixed pairs, and migrant/mixed pairs breeding earlier than residents in most years but later in one (unusually cold) year. Pairs that laid early were more likely to replace their clutch after nest loss, had higher productivity and higher fledging success, independent of pair migratory behavior. Our study suggests that the links between individual migratory behavior and reproductive success can vary over time and, to a much lesser extent, with mate migratory behavior and can be mediated by differences in laying dates. Understanding these cascading effects of pair phenology on breeding success is likely to be key to predicting the impact of changing environmental conditions on migratory species.  相似文献   
14.
15.
E-cadherin protein (CDH1 gene) integrity is fundamental to the process of epithelial polarization and differentiation. Deregulation of the E-cadherin function plays a crucial role in breast cancer metastases, with worse prognosis and shorter overall survival. In this narrative review, we describe the inactivating mechanisms underlying CDH1 gene activity and its possible translation to clinical practice as a prognostic biomarker and as a potential targeted therapy.  相似文献   
16.
International Journal of Primatology - The hormone dehydroepiandrosterone (DHEA) and its sulfate ester (DHEAS) are the most abundant circulating steroids in human and some nonhuman primates, and...  相似文献   
17.
The analysis on nine inventories on the richness and diversity of galling herbivores in Brazil accounted for 806 gall systems occurring in 443 host-plant species from 74 plant families. This checklist of the Brazilian gall morphotypes proposes seven standardized morphotypes and five additional shapes that group the majority of the three-dimensional shapes reported in literature. Criteria are proposed to standardize the terminology, and a critical analysis is provided aiming to avoid possible inconsistencies in order to generate easily comparable data in future inventories. The morphotypes are herein catalogued in alphabetical order, accompanied by a conceptual definition, an illustration, and examples that best represent the shape. It is proposed that the inventories should present at least the (1) host-plant species, (2) galling herbivore species or its identification to the lowest possible taxonomic level, (3) host-plant galled organ and gall position, (4) gall morphotype, (5) gall color and registration of indumentum when present, (6) gall phenological and developmental data, (7) association with other trophic levels, and (8) additional information, such as dimension, and number of chamber(s).  相似文献   
18.
Of the current next-generation sequencing technologies, SMRT sequencing is sometimes overlooked. However, attributes such as long reads, modified base detection and high accuracy make SMRT a useful technology and an ideal approach to the complete sequencing of small genomes.Pacific Biosciences'' single molecule, real-time sequencing technology, SMRT, is one of several next-generation sequencing technologies that are currently in use. In the past, it has been somewhat overlooked because of its lower throughput compared with methods such as Illumina and Ion Torrent, and because of persistent rumors that it is inaccurate. Here, we seek to dispel these misconceptions and show that SMRT is indeed a highly accurate method with many advantages when used to sequence small genomes, including the possibility of facile closure of bacterial genomes without additional experimentation. We also highlight its value in being able to detect modified bases in DNA.  相似文献   
19.

Background

Leprosy is a chronic disease, caused by Mycobacterium leprae, which poses a serious public health problem worldwide. Its high incidence in people under 15 years old in Ceará state, Brazil, reflects the difficulty of its control. The spectrum of clinical manifestations is associated with the immune response developed, with the Th1 and Th2 responses being related to the paucibacillary and multibacillary forms, respectively. Regulatory T cells (Treg), which can suppress Th1 and Th2 response, have received special attention in the literature and have been associated with development of chronic infections. However, their role in leprosy in individuals under 15 years old has not yet been elucidated. We evaluated the frequency of CD4+/CD8+CD25highFOXP3+ and CD4+/CD8+CD25highFOXP3high cells in leprosy patients and household contacts, in both cases under 15 years old.

Methodology/Principal Findings

PBMC from 12 patients and 17 contacts were cultured for 72 hours with anti-CD3 and anti-CD28 (activators) or with activators associated with total sonicated fraction of M. leprae. After culture, the frequency of CD4+/CD8+ Treg was identified by flow cytometry. Cells stimulated by activators and antigen from multibacillary patients showed Treg frequencies almost two times that of the contacts: CD4+FOXP3+ (21.93±8.43 vs. 13.79±8.19%, p = 0.0500), CD4+FOXP3high (10.33±5.69 vs. 5.57±4.03%, p = 0.0362), CD8+FOXP3+ (13.88±9.19 vs. 6.18±5.56%, p = 0.0230) and CD8+FOXP3high (5.36±4.17 vs. 2.23±2.68%, p = 0.0461). Furthermore, the mean fluorescence intensity of FOXP3 in Treg was higher in multibacillary patients than in the contacts. Interestingly, there was a positive correlation of the bacillary index and number of lesions with the frequency of all Treg evaluated in patients.

Conclusions/Significance

We have demonstrated for the first time that multibacillary leprosy patients under 15 years old have greater CD4+ and CD8+ Treg frequencies and these correlate with clinical and laboratorial aspects of disease. These findings suggest the involvement of these cells in the perpetuation of M. leprae infection.  相似文献   
20.

Aims

Hypoglycemia is a severe side effect of intensive insulin therapy. Recurrent hypoglycemia (RH) impairs the counter-regulatory response (CRR) which restores euglycemia. During hypoglycemia, ventromedial hypothalamus (VMH) production of nitric oxide (NO) and activation of its receptor soluble guanylyl cyclase (sGC) are critical for the CRR. Hypoglycemia also increases brain reactive oxygen species (ROS) production. NO production in the presence of ROS causes protein S-nitrosylation. S-nitrosylation of sGC impairs its function and induces desensitization to NO. We hypothesized that during hypoglycemia, the interaction between NO and ROS increases VMH sGC S-nitrosylation levels and impairs the CRR to subsequent episodes of hypoglycemia. VMH ROS production and S-nitrosylation were quantified following three consecutive daily episodes of insulin-hypoglycemia (RH model). The CRR was evaluated in rats in response to acute insulin-induced hypoglycemia or via hypoglycemic-hyperinsulinemic clamps. Pretreatment with the anti-oxidant N-acetyl-cysteine (NAC) was used to prevent increased VMH S-nitrosylation.

Results

Acute insulin-hypoglycemia increased VMH ROS levels by 49±6.3%. RH increased VMH sGC S-nitrosylation. Increasing VMH S-nitrosylation with intracerebroventricular injection of the nitrosylating agent S-nitroso-L-cysteine (CSNO) was associated with decreased glucagon secretion during hypoglycemic clamp. Finally, in RH rats pre-treated with NAC (0.5% in drinking water for 9 days) hypoglycemia-induced VMH ROS production was prevented and glucagon and epinephrine production was not blunted in response to subsequent insulin-hypoglycemia.

Conclusion

These data suggest that NAC may be clinically useful in preventing impaired CRR in patients undergoing intensive-insulin therapy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号