首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   98篇
  免费   5篇
  2022年   1篇
  2021年   7篇
  2020年   1篇
  2018年   2篇
  2017年   1篇
  2016年   4篇
  2015年   4篇
  2014年   4篇
  2013年   4篇
  2012年   4篇
  2011年   7篇
  2010年   5篇
  2009年   3篇
  2008年   7篇
  2007年   3篇
  2006年   3篇
  2005年   5篇
  2004年   7篇
  2002年   2篇
  2001年   1篇
  2000年   6篇
  1999年   3篇
  1998年   1篇
  1994年   1篇
  1988年   1篇
  1986年   2篇
  1985年   1篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1976年   1篇
  1975年   1篇
  1974年   1篇
  1970年   1篇
  1967年   1篇
  1966年   1篇
  1965年   1篇
  1930年   1篇
  1925年   1篇
排序方式: 共有103条查询结果,搜索用时 156 毫秒
21.
22.
23.
The nematode cuticle is a complex extracellular structure which is secreted by an underlying syncytium of hypodermal cells. Recent studies have demonstrated that the cuticle of parasitic nematodes is a dynamic structure with important absorptive, secretory, and enzymatic activities. In addition, the cuticle serves as a protective barrier against the host. A 48-h third stage larval Dirofilaria immitis cDNA library was immunoscreened with sera raised against larval cuticles. One clone, L3MC4 that reacted strongly with the anti-cuticle antisera was sequenced. The composite cDNA sequence comprises 2073 bp coding for a full-length protein of 590 amino acids. GenBank analysis showed that DiAsp had significant similarity to a Caenorhabditis elegans gene-product (54% identity) and to other asparaginases at the amino acid level. Escherichia coli-expressed recombinant DiAsp (rDiAsp) catalysed the hydrolysis of asparagine to aspartate and ammonia. Antibodies raised against D. immitis larval cuticles reacted with rDiAsp in immunoblots. This is the first report of identification of a cDNA clone encoding an asparaginase enzyme from a parasitic nematode.  相似文献   
24.
25.
We have described here the cloning and partial characterization of a cDNA encoding a cuticular antigen of Dirofilaria immitis. A 48-h third-stage larval D. immitis cDNA library was immunoscreened with sera raised in mice against third-stage larval cuticles (mouse anti-L3 cuticle antisera). A strongly immunoreactive clone (L3MC4) was isolated. Sequence analysis of L3MC4 showed that it was a partial length cDNA. The missing 5′ end of the clone was amplified by PCR from D. immitis adult female first-strand cDNA using the nematode 22-base splice leader sequence and a L3MC4-specific antisense primer. The composite cDNA sequence comprised 616 bases (nDiL3MC4) encoding a full-length protein of 146 amino acids (DiL3MC4). GenBank analysis showed that DiL3MC4 shared some homology to an unknown C. elegans gene product (31%) at the amino acid level. However, there were no related filarial expressed sequence tags in the current GenBank™ database. Antibodies to recombinant DiL3MC4 (rDiL3MC4) identified a 19-kDa native antigen in the adults and in the L3 and L4 larval stages of D. immitis. In addition, the antibodies bound to the cortical layers of the L3 cuticle, as revealed by immuno-gold electron microscopy. The native protein was not detected in larval and adult excretory–secretory products. Immunoblot analysis showed that serum from a rabbit that was repeatedly injected with a small number of D. immitis third stage larvae reacted with rDiL3MC4. Thus, DiL3MC4 is a novel cuticular antigen of a filarial parasite.  相似文献   
26.
Many methods have been developed for statistical analysis of microbial community profiles, but due to the complex nature of typical microbiome measurements (e.g. sparsity, zero-inflation, non-independence, and compositionality) and of the associated underlying biology, it is difficult to compare or evaluate such methods within a single systematic framework. To address this challenge, we developed SparseDOSSA (Sparse Data Observations for the Simulation of Synthetic Abundances): a statistical model of microbial ecological population structure, which can be used to parameterize real-world microbial community profiles and to simulate new, realistic profiles of known structure for methods evaluation. Specifically, SparseDOSSA’s model captures marginal microbial feature abundances as a zero-inflated log-normal distribution, with additional model components for absolute cell counts and the sequence read generation process, microbe-microbe, and microbe-environment interactions. Together, these allow fully known covariance structure between synthetic features (i.e. “taxa”) or between features and “phenotypes” to be simulated for method benchmarking. Here, we demonstrate SparseDOSSA’s performance for 1) accurately modeling human-associated microbial population profiles; 2) generating synthetic communities with controlled population and ecological structures; 3) spiking-in true positive synthetic associations to benchmark analysis methods; and 4) recapitulating an end-to-end mouse microbiome feeding experiment. Together, these represent the most common analysis types in assessment of real microbial community environmental and epidemiological statistics, thus demonstrating SparseDOSSA’s utility as a general-purpose aid for modeling communities and evaluating quantitative methods. An open-source implementation is available at http://huttenhower.sph.harvard.edu/sparsedossa2.  相似文献   
27.
28.
29.
Antibody prevalence studies in laboratory mice indicate that murine norovirus (MNV) infections are common, but the natural history of these viruses has not been fully established. This study examined the extent of genetic diversity of murine noroviruses isolated from healthy laboratory mice housed in multiple animal facilities within a single, large research institute- the National Institute of Allergy and Infectious Diseases of the National Institutes of Health (NIAID-NIH) in Bethesda, Maryland, U.S. Ten distinct murine norovirus strains were isolated from various tissues and feces of asymptomatic wild type sentinel mice as well as asymptomatic immunodeficient (RAG 2(-/-)) mice. The NIH MNV isolates showed little cytopathic effect in permissive RAW264.7 cells in early passages, but all isolates examined could be adapted to efficient growth in cell culture by serial passage. The viruses, although closely related in genome sequence, were distinguishable from each other according to facility location, likely due to the introduction of new viruses into each facility from separate sources or vendors at different times. Our study indicates that the murine noroviruses are widespread in these animal facilities, despite rigorous guidelines for animal care and maintenance.  相似文献   
30.
Chlamydia pneumoniae is an omnipresent obligate intracellular bacterial pathogen that infects numerous host species. C. pneumoniae infections of humans are a common cause of community acquired pneumonia but have also been linked to chronic diseases such as atherosclerosis, Alzheimer's disease, and asthma. Persistent infection and immune avoidance are believed to play important roles in the pathophysiology of C. pneumoniae disease. We found that C. pneumoniae organisms inhibited activated but not nonactivated human T cell proliferation. Inhibition of proliferation was pathogen specific, heat sensitive, and multiplicity of infection dependent and required chlamydial entry but not de novo protein synthesis. Activated CD4(+) and CD8(+) T cells were equally sensitive to C. pneumoniae antiproliferative effectors. The C. pneumoniae antiproliferative effect was linked to T cell death associated with caspase 1, 8, 9, and IL-1β production, indicating that both apoptotic and pyroptotic cellular death pathways were activated after pathogen-T cell interactions. Collectively, these findings are consistent with the conclusion that C. pneumoniae could induce a local T cell immunosuppression and inflammatory response revealing a possible host-pathogen scenario that would support both persistence and inflammation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号