首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   490篇
  免费   27篇
  2023年   2篇
  2022年   5篇
  2021年   7篇
  2020年   7篇
  2019年   6篇
  2018年   9篇
  2017年   14篇
  2016年   11篇
  2015年   20篇
  2014年   30篇
  2013年   21篇
  2012年   50篇
  2011年   37篇
  2010年   15篇
  2009年   17篇
  2008年   39篇
  2007年   28篇
  2006年   29篇
  2005年   23篇
  2004年   23篇
  2003年   16篇
  2002年   20篇
  2001年   10篇
  2000年   7篇
  1999年   2篇
  1998年   6篇
  1997年   4篇
  1994年   5篇
  1993年   6篇
  1991年   3篇
  1990年   3篇
  1989年   2篇
  1988年   1篇
  1987年   2篇
  1986年   2篇
  1985年   5篇
  1984年   1篇
  1983年   1篇
  1982年   4篇
  1981年   2篇
  1980年   2篇
  1979年   3篇
  1978年   1篇
  1976年   2篇
  1975年   3篇
  1974年   2篇
  1973年   3篇
  1972年   1篇
  1962年   1篇
  1959年   1篇
排序方式: 共有517条查询结果,搜索用时 343 毫秒
271.
Methylglyoxal is a reactive dicarbonyl compound endogenously produced mainly from glycolytic intermediates. Recent research indicates that methylglyoxal is a potent growth inhibitor and genotoxic agent. The antiproliferative activity of methylglyoxal has been investigated for pharmacological application in cancer chemotherapy. However, various cells are not equally sensitive to methylglyoxal toxicity. Therefore, it would be important to establish the cellular factors responsible for the different cell-type specific response to methylglyoxal injury, in order to avoid the risk of failure of a therapy based on increasing the intracellular level of methylglyoxal. To this purpose, we comparatively evaluated the signaling transduction pathway elicited by methylglyoxal in human glioblastoma (ADF) and neuroblastoma (SH-SY 5Y) cells. Results show that methylglyoxal causes early and extensive reactive oxygen species generation in both cell lines. However, SH-SY 5Y cells show higher sensitivity to methylglyoxal challenge due to a defective antioxidant and detoxifying ability that, preventing these cells from an efficient scavenging action, elicits extensive caspase-9 dependent apoptosis. These data emphasize the pivotal role of antioxidant and detoxifying systems in determining the grade of sensitivity of cells to methylglyoxal.  相似文献   
272.
273.
Helicobacter pylori (Hp) infection is associated with gastric inflammation and ulceration. The pathways of tissue damage in Hp-infected subjects are complex, but evidence indicates that T cell-derived cytokines enhance the synthesis of matrix metalloproteinases (MMP) that contribute to mucosal ulceration and epithelial damage. In this study, we have examined the role of the T cell cytokine IL-21 in Hp-infected gastric mucosa and evaluated whether IL-21 regulates MMP production by gastric epithelial cells. We show that IL-21 is constitutively expressed in gastric mucosa and is more abundant in biopsy specimens and purified mucosal CD3(+) T cells from Hp-infected patients compared with normal patients and disease controls. We also demonstrate that IL-21R is expressed by primary gastric epithelial cells, as well as by the gastric epithelial cell lines AGS and MKN28. Consistently, AGS cells respond to IL-21 by increasing production of MMP-2 and MMP-9, but not MMP-1, MMP-3, MMP-7, or tissue inhibitors of MMP. Analysis of signaling pathways leading to MMP production reveals that IL-21 enhances NF-kappaB but not MAPK activation, and inhibition of NF-kappaB activation reduces IL-21-induced MMP-2 and MMP-9 production. Finally, we show that treatment of Hp-infected gastric explants with anti-IL-21 reduces epithelial cell-derived MMP-2 and MMP-9 production. These data indicate that IL-21 is overexpressed in Hp-infected gastric mucosa where it could contribute to increased epithelial gelatinase production.  相似文献   
274.
Extracellular [K+] can increase during some pathological conditions, resulting into excessive glutamate release through multiple mechanisms. We here investigate the overflow of [3H]D-aspartate ([3H] D-ASP) and of endogenous glutamate elicited by increasing [K+] from purified rat cerebrocortical synaptosomes. Depolarization with [K+] 15 mmol/L were prevented by the glutamate transporter inhibitors DL-threo-beta-benzyloxyaspartate (DL-TBOA) and dihydrokainate. Differently, the overflows of endogenous glutamate provoked by [K+] > 15 mmol/L were insensitive to both inhibitors; the external Ca2+-independent glutamate overflow caused by 50 mmol/L KCl was prevented by bafilomycin, by chelating intraterminal Ca2+, by blocking the mitochondrial Na+/Ca2+ exchanger and, for a small portion, by blocking anion channels. In contrast to purified synaptosomes, the 50 mmol/L K+-evoked release of endogenous glutamate or [3H]D-ASP was inhibited by DL-TBOA in crude synaptosomes; moreover, it was external Ca2+-insensitive and blocked by DL-TBOA in purified gliosomes, suggesting that carrier-mediated release of endogenous glutamate provoked by excessive [K+] in CNS tissues largely originates from glia.  相似文献   
275.
Parkinson's disease (PD) is a heterogeneous movement disorder characterized by progressive degeneration of dopamine neurons in substantia nigra. We have previously presented genetic evidence for the possible involvement of alcohol and aldehyde dehydrogenases (ADH; ALDH) by identifying genetic variants in ADH1C and ADH4 that associate with PD. The absence of the corresponding mRNA species in the brain led us to the hypothesis that one cause of PD could be defects in the defense systems against toxic aldehydes in the gastrointestinal tract. We investigated cellular expression of Adh1, Adh3, Adh4 and Aldh1 mRNA along the rodent GI tract. Using oligonucleotide in situ hybridization probes, we were able to resolve the specific distribution patterns of closely related members of the ADH family. In both mice and rats, Adh4 is transcribed in the epithelium of tongue, esophagus and stomach, whereas Adh1 was active from stomach to rectum in mice, and in duodenum, colon and rectum in rats. Adh1 and Adh4 mRNAs were present in the mouse gastric mucosa in nonoverlapping patterns, with Adh1 in the gastric glands and Adh4 in the gastric pits. Aldh1 was found in epithelial cells from tongue to jejunum in rats and from esophagus to colon in mice. Adh3 hybridization revealed low mRNA levels in all tissues investigated. The distribution and known physiological functions of the investigated ADHs and Aldh1 are compatible with a role in a defense system, protecting against alcohols, aldehydes and formaldehydes as well as being involved in retinoid metabolism.  相似文献   
276.
Kinetic and spectroscopic studies were carried out to study the role of hydrophobic effect on the activity of bovine serum amine oxidase (BSAO). Increasing the chain length of the substrates (linear aliphatic primary monoamines), the affinity for the active site increases while the catalytic constant decreases in accordance with a relative low value of dielectric constant (about 10) estimated for the microenvironment of BSAO active site using a fluorescent probe sensitive to solvent polarity. The aliphatic chain of 1-aminononane induces a shift in the pK(a) of the product Schiff base, the hydrolysis of which appears to be a rate-determining step of the reaction. Furthermore, circular dichroism studies highlighted the "flexibility" of BSAO secondary structure that can explain the wide substrate specificity of this enzyme. These results should be useful to elucidate the substrate/inhibitor preferences of CuAOs, in particular of the human enzyme.  相似文献   
277.
Sulfatase modifying factor 1 (SUMF1) is the gene mutated in multiple sulfatase deficiency (MSD) that encodes the formylglycine-generating enzyme, an essential activator of all the sulfatases. SUMF1 is a glycosylated enzyme that is resident in the endoplasmic reticulum (ER), although it is also secreted. Here, we demonstrate that upon secretion, SUMF1 can be taken up from the medium by several cell lines. Furthermore, the in vivo engineering of mice liver to produce SUMF1 shows its secretion into the blood serum and its uptake into different tissues. Additionally, we show that non-glycosylated forms of SUMF1 can still be secreted, while only the glycosylated SUMF1 enters cells, via a receptor-mediated mechanism. Surprisingly, following its uptake, SUMF1 shuttles from the plasma membrane to the ER, a route that has to date only been well characterized for some of the toxins. Remarkably, once taken up and relocalized into the ER, SUMF1 is still active, enhancing the sulfatase activities in both cultured cells and mice tissues.  相似文献   
278.
Ghrelin is an orexigenic peptide hormone secreted by the stomach. In patients with metabolic syndrome and low ghrelin levels, intra-arterial ghrelin administration acutely improves their endothelial dysfunction. Therefore, we hypothesized that ghrelin activates endothelial nitric oxide synthase (eNOS) in vascular endothelium, resulting in increased production of nitric oxide (NO) using signaling pathways shared in common with the insulin receptor. Similar to insulin, ghrelin acutely stimulated increased production of NO in bovine aortic endothelial cells (BAEC) in primary culture (assessed using NO-specific fluorescent dye 4,5-diaminofluorescein) in a time- and dose-dependent manner. Production of NO in response to ghrelin (100 nM, 10 min) in human aortic endothelial cells was blocked by pretreatment of cells with NG-nitro-L-arginine methyl ester (nitric oxide synthase inhibitor), wortmannin [phosphatidylinositol (PI) 3-kinase inhibitor], or (D-Lys3)-GHRP-6 (selective antagonist of ghrelin receptor GHSR-1a), as well as by knockdown of GHSR-1a using small-interfering (si) RNA (but not by mitogen/extracellular signal-regulated kinase inhibitor PD-98059). Moreover, ghrelin stimulated increased phosphorylation of Akt (Ser473) and eNOS (Akt phosphorylation site Ser1179) that was inhibitable by knockdown of GHSR-1a using siRNA or by pretreatment of cells with wortmannin but not with PD-98059. Ghrelin also stimulated phosphorylation of mitogen-activated protein (MAP) kinase in BAEC. However, unlike insulin, ghrelin did not stimulate MAP kinase-dependent secretion of the vasoconstrictor endothelin-1 from BAEC. We conclude that ghrelin has novel vascular actions to acutely stimulate production of NO in endothelium using a signaling pathway that involves GHSR-1a, PI 3-kinase, Akt, and eNOS. Our findings may be relevant to developing novel therapeutic strategies to treat diabetes and related diseases characterized by reciprocal relationships between endothelial dysfunction and insulin resistance.  相似文献   
279.
Three mouse killer immunoglobulin-like receptors (KIRs), namely, KIR3DL1, KIRL1, and KIRL2, have recently been identified in C56BL/6 (B6) mice. However, only two Kir genes are found in the B6 mouse genome sequence data base. To clarify this discrepancy, we cloned Kir cDNAs from multiple strains of mice. Sequencing of the cDNA clones showed that the Kir3dl1 gene is found in C3H/HeJ and CBA/J but not in B6 mice. Analysis of the single nucleotide polymorphism data base suggested that Kir3dl1 is the C3H/HeJ and CBA/J allele of Kirl1. We generated mAb to the recombinant KIRL1 protein to investigate its expression pattern. The anti-KIRL1 mAb bound to NK1.1+ T cells but only very weakly or at undetectable levels to other lymphocytes including natural killer (NK) cells and conventional T cells. Among NK1.1+ T cells, conventional NK T cells stained with CD1d tetramer did not significantly bind anti-KIRL1 mAb, whereas CD1d-tetramer-negative subset was KIRL1-positive. Furthermore, the expression of KIRL1 is readily detected on NK1.1+ T cells from β2-microglobulin-deficient B6 mice. Thus, KIRL1 is predominantly expressed on CD1d-independent NK1.1+ T cells.  相似文献   
280.
Vineyards of southern France and northern Italy are affected by the flavescence dorée (FD) phytoplasma, a quarantine pathogen transmitted by the leafhopper of Nearctic origin Scaphoideus titanus. To better trace propagation of FD strains and identify possible passage between the vineyard and wild plant compartments, molecular typing of phytoplasma strains was applied. The sequences of the two genetic loci map and uvrB-degV, along with the sequence of the secY gene, were determined among a collection of FD and FD-related phytoplasmas infecting grapevine, alder, elm, blackberry, and Spanish broom in Europe. Sequence comparisons and phylogenetic analyses consistently indicated the existence of three FD phytoplasma strain clusters. Strain cluster FD1 (comprising isolate FD70) displayed low variability and represented 17% of the disease cases in the French vineyard, with a higher incidence of the cases in southwestern France. Strain cluster FD2 (comprising isolates FD92 and FD-D) displayed no variability and was detected both in France (83% of the cases) and in Italy, whereas the more-variable strain cluster FD3 (comprising isolate FD-C) was detected only in Italy. The clonal property of FD2 and its wide distribution are consistent with diffusion through propagation of infected-plant material. German Palatinate grapevine yellows phytoplasmas (PGY) appeared variable and were often related to some of the alder phytoplasmas (AldY) detected in Italy and France. Finally, phylogenetic analyses concluded that FD, PGY, and AldY were members of the same phylogenetic subclade, which may have originated in Europe.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号