首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   85篇
  免费   3篇
  2021年   4篇
  2020年   1篇
  2018年   3篇
  2017年   2篇
  2016年   9篇
  2015年   5篇
  2014年   6篇
  2013年   5篇
  2012年   6篇
  2011年   2篇
  2010年   5篇
  2009年   4篇
  2008年   5篇
  2007年   7篇
  2006年   5篇
  2005年   4篇
  2004年   3篇
  2003年   3篇
  2002年   1篇
  2001年   1篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1994年   1篇
  1991年   1篇
  1989年   1篇
排序方式: 共有88条查询结果,搜索用时 15 毫秒
31.
From a number of wild plant species growing on soils highly contaminated by heavy metals in Eastern Spain, Nicotiana glauca R. Graham (shrub tobacco) was selected for biotechnological modification, because it showed the most appropriate properties for phytoremediation. This plant has a wide geographic distribution, is fast-growing with a high biomass, and is repulsive to herbivores. Following Agrobacterium mediated transformation, the induction and overexpression of a wheat gene encoding phytochelatin synthase (TaPCS1) in this particular plant greatly increased its tolerance to metals such as Pb and Cd, developing seedling roots 160% longer than wild type plants. In addition, seedlings of transformed plants grown in mining soils containing high levels of Pb (1572 ppm) accumulated double concentration of this heavy metal than wild type. These results indicate that the transformed N. glauca represents a highly promising new tool for use in phytoremediation efforts.  相似文献   
32.
Abstract: The effect of chronic and in vitro ethanol exposure on brain oxygen radical formation and lipid peroxidation was analyzed. Ethanol induces a dose-dependent increase in lipid peroxidation in brain homogenates. The peroxidative effects of alcohol seem to be related to both cytochrome P450 and the ethanol-inducible form of cytochrome P450 (CYP2E1), because preincubation with metyrapone (an inhibitor of cytochrome P450) or with an antibody against CYP2E1 abolished the ethanol-increased lipid peroxidation. Using the formation of dichlorofluorescein, we also demonstrated that both in vitro and chronic alcohol exposure significantly enhanced the formation of oxygen radical species in synaptosomes. Chronic alcohol treatment also leads to an induction of cytochrome P450 (230%), NADPH cytochrome c reductase (180%), NADPH oxidation (184%), and CYP2E1 in brain microsomes. In addition, this treatment produced a decrease in the GSH/GSSG ratio in brain and significantly enhanced the levels of superoxide dismutase and catalase activities. This mechanism could be involved in the toxic effects of ethanol on brain and membrane alterations occurring after chronic ethanol intake.  相似文献   
33.
Acute ammonia toxicity is mediated by excessive activation of NMDA receptors. Activation of NMDA receptors leads to activation of poly(ADP-ribose) polymerase (PARP) which mediates NMDA excitotoxicity. PARP is activated following DNA damage and may lead to cell death via NAD+ and ATP depletion. The aim of the present work was to assess whether acute ammonia intoxication in vivo leads to increased PARP in brain cells nuclei and to altered NAD+ and superoxide metabolism and the contribution of NMDA receptors to these alterations. Acute ammonia intoxication increases PARP content twofold in brain cells nuclei.NAD+ content decreased by 55% in rats injected with ammonia. This was not due to decreased NAD+ synthetase nor increased NAD+ hydrolase activities and would be due to increased NAD+ consumption by PARP. Superoxide radical formation increased by 75% in nuclei of brains of rats injected with ammonia, that also induced protein nitrotyrosylation and DNA damage. Blocking NMDA receptors prevented ammonia-induced PARP, superoxide and nitrotyrosylation increase, DNA damage and NAD+ decrease. These results show that acute ammonia intoxication in vivo leads to activation of NMDA receptors, leading to increased superoxide formation and PARP content and depletion of NAD+ in brain cells nuclei that contribute to ammonia toxicity.  相似文献   
34.
Pompe disease is an inherited metabolic disorder due to the deficiency of the lysosomal acid α-glucosidase (GAA). The only approved treatment is enzyme replacement therapy with the recombinant enzyme (rhGAA). Further approaches like pharmacological chaperone therapy, based on the stabilising effect induced by small molecules on the target enzyme, could be a promising strategy. However, most known chaperones could be limited by their potential inhibitory effects on patient’s enzymes. Here we report on the discovery of novel chaperones for rhGAA, L- and D-carnitine, and the related compound acetyl-D-carnitine. These drugs stabilise the enzyme at pH and temperature without inhibiting the activity and acted synergistically with active-site directed pharmacological chaperones. Remarkably, they enhanced by 4-fold the acid α-glucosidase activity in fibroblasts from three Pompe patients with added rhGAA. This synergistic effect of L-carnitine and rhGAA has the potential to be translated into improved therapeutic efficacy of ERT in Pompe disease.  相似文献   
35.
36.

Objective:

Obesity‐associated nonalcoholic fatty liver disease (NAFLD), covering from simple steatosis to nonalcoholic steatohepatitis (NASH), is a common cause of chronic liver disease. Aberrant production of adipocytokines seems to play a main role in most obesity‐associated disorders. Changes in adipocytokines in obesity could be mediated by alterations in cyclic GMP (cGMP) homeostasis. The aims of this work were: (1) to study the role of altered cGMP homeostasis in altered adipocytokines in morbid obesity, (2) to assess whether these alterations are different in simple steatosis or NASH, and (3) to assess whether these changes reverse in obese patients after bariatric surgery.

Design and Methods:

In 47 patients with morbid obesity and 45 control subjects, the levels in blood of adipocytokines, cGMP, nitric oxide (NO) metabolites, and atrial natriuretic peptide (ANP) were studied. Whether weight loss after a bariatric surgery reverses the changes in these parameters was evaluated.

Results:

NO metabolites and leptin increase (and adiponectin decreases) similarly in patients with steatosis or NASH, suggesting that these changes are due to morbid obesity and not to liver disease. Inflammation and cGMP homeostasis are affected both by morbid obesity and by liver disease. The increases in interleukin 6 (IL‐6), interleukin 18 (IL‐18), plasma cGMP, ANP, and the decrease in cGMP in lymphocytes are stronger in patients with NASH than with steatosis. All these changes reverse completely after bariatric surgery and weight loss, except IL‐18.

Conclusion:

Altered cGMP homeostasis seems to contribute more than inflammation to changes in leptin and adiponectin in morbid obesity.  相似文献   
37.
Molecular Biology Reports - Some E. coli strains that synthesize the toxin colibactin within the 54-kb pks island are being implicated in colorectal cancer (CRC) development. Here, the prevalence...  相似文献   
38.
39.
Persistent pruritus is a common disabling dermatologic symptom associated with different etiologic factors. These include primary skin conditions, as well as neuropathic, psychogenic, or systemic disorders like chronic liver disease. Defective clearance of potential pruritogenic substances that activate itch-specific neurons innervating the skin is thought to contribute to cholestatic pruritus. However, because the underlying disease-specific pruritogens and itch-specific neuronal pathways and mechanism(s) are unknown, symptomatic therapeutic intervention often leads to no or only limited success. In the current study, we aimed to first validate rats with bile duct ligation (BDL) as a model for hepatic pruritus and then to evaluate the contribution of inflammation, peripheral neuronal sensitization, and specific signaling pathways and subpopulations of itch-responsive neurons to scratching behavior and thermal hypersensitivity. Chronic BDL rats displayed enhanced scratching behavior and thermal hyperalgesia indicative of peripheral neuroinflammation. BDL-induced itch and hypersensitivity involved a minor contribution of histaminergic/serotonergic receptors, but significant activation of protein-activated receptor 2 (PAR2) receptors, prostaglandin PGE2 formation, and potentiation of transient receptor potential vanilloid 1 (TRPV1) channel activity. The sensitization of dorsal root ganglion nociceptors in BDL rats was associated with increased surface expression of PAR2 and TRPV1 proteins and an increase in the number of PAR2- and TRPV1-expressing peptidergic neurons together with a shift of TRPV1 receptor expression to medium sized dorsal root ganglion neurons. These results suggest that pruritus and hyperalgesia in chronic cholestatic BDL rats are associated with neuroinflammation and involve PAR2-induced TRPV1 sensitization. Thus, pharmacological modulation of PAR2 and/or TRPV1 may be a valuable therapeutic approach for patients with chronic liver pruritus refractory to conventional treatments.  相似文献   
40.
Photosynthate translocation to the root in loquat trees decreases as fruit develops. Thus, during the most active period of fruit development, that is, from 50 % of its final size to the beginning of fruit color change, which correspond to BBCH growth scale stages 705 and 801, both translocating and reducing carbohydrate concentrations diminish greatly. Concomitantly, the results from our experiment show an increased abscisic acid (ABA) concentration and a decrease in the respiration rate detected by an accumulation of glucose-6-phosphate, which paralleled a reduced indole-3-acetic acid (IAA) concentration in roots. As a consequence, root development was strongly and significantly reduced. Because loquat fruit develops in winter and nonshoot growth takes place at this time, our results show that root development in loquat trees is controlled by the fruit, mediated by competition for carbohydrates and modulated by hormones. The experiment was conducted using field-grown loquat during two consecutive years and by comparing fruiting and defruited trees. Fruits were detached from the trees in the early fruit developmental stage (10 % of final size, 701 BBCH growth scale), and carbohydrate concentrations in leaves, shoot bark, and roots, as well as nitrogen fractions (N–NO3 ?, N–NH4 +, and N–proteinaceous) and hormone (IAA, zeatin, and ABA) concentrations in roots, were analyzed throughout the period of fruit development. Root development was evaluated by counting the emerging lateral root primordia during the fruit developmental stages BBCH growth scale 701–809 (fruit color fully developed).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号