首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7720篇
  免费   533篇
  2023年   21篇
  2022年   72篇
  2021年   131篇
  2020年   81篇
  2019年   125篇
  2018年   162篇
  2017年   141篇
  2016年   247篇
  2015年   375篇
  2014年   424篇
  2013年   569篇
  2012年   677篇
  2011年   624篇
  2010年   400篇
  2009年   343篇
  2008年   425篇
  2007年   420篇
  2006年   388篇
  2005年   370篇
  2004年   327篇
  2003年   337篇
  2002年   317篇
  2001年   92篇
  2000年   102篇
  1999年   96篇
  1998年   104篇
  1997年   72篇
  1996年   63篇
  1995年   67篇
  1994年   57篇
  1993年   47篇
  1992年   75篇
  1991年   34篇
  1990年   38篇
  1989年   33篇
  1988年   39篇
  1987年   38篇
  1986年   26篇
  1985年   33篇
  1984年   37篇
  1983年   23篇
  1982年   21篇
  1981年   18篇
  1980年   14篇
  1979年   15篇
  1977年   17篇
  1976年   15篇
  1975年   12篇
  1974年   12篇
  1972年   10篇
排序方式: 共有8253条查询结果,搜索用时 312 毫秒
111.
A new species of Rhodotorula Harrison was recovered in May 1978 from Spanish powdered red pepper (Capsicum frutescens L.) in Madrid, Spain. It could not be identified with any hitherto described species of yeast and it was assigned to the genus Rhodotorula Harrison as representative of a new species on the bases of both its morphological and physiological characteristics, for which the name of Rhodotorula matritense is proposed.  相似文献   
112.
Carmen Lluis  Jorge Bozal 《BBA》1977,461(2):209-217
Chicken liver lactate dehydrogenase (l-lactate: NAD+ oxidoreductase, EC 1.1.1.27) catalyses the reversible reduction reaction of hydroxypyruvate to l-glycerate. It also catalyses the oxidation reaction of the hydrated form of glyoxylate to oxalate and the reduction of the non-hydrated form to glycolate. At pH 8, these latter two reactions are coupled. The coupled system equilibrium is attained when the NAD+/NADH ratio is greater than unity.Hydroxypyruvate binds to the enzyme at the same site as the pyruvate. When there are substances with greater affinity to this site in the reaction medium and their concentration is very high, hydroxypyruvate binds to the enzyme at the l-lactate site. In vitro and with purified preparation of lactate dehydrogenase, hydroxypyruvate stimulates the production of oxalate from glyoxylate-hydrated form and from NAD; the effect is due to the fact that hydroxypyruvate prevents the binding of non-hydrated form of glyoxylate to the lactate dehydrogenase in the pyruvate binding site. At pH 8, the l-glycerate stimulates the production of glycolate from glyoxylate-non-hydrated form and NADH since hydroxypyruvate prevents the binding of glyoxylate-hydrated form to the enzyme.  相似文献   
113.
Small-angle X-ray scattering data suggest that major but reversible rearrangements of mitochondrial inner membrane structure are induced by uncouplers. Low levels of 2,4-dinitrophenol (10 μM) cause a perceptible wide-angle shift of the 20 mrad X-ray scattering maximum characteristic of intact liver mitochondria. Higher dinitrophenol concentrations (> 25 μM) reduce this scattering maximum to one-third its initial intensity. In terms of mitochondrial function, the former scattering change appears to correlate with the uncoupling of oxidative phosphorylation while the latter occurs in the course of dinitrophenol stimulation of mitochondrial ATPase activity.  相似文献   
114.
115.
116.
Upon epidermal growth factor (EGF) stimulation, fetal (20 days of gestation) and regenerating (44-48 h after partial hepatectomy) rat hepatocytes, isolated and cultured under identical conditions, increased DNA synthesis and entered into S-phase and mitosis, measured as [3H]thymidine incorporation and DNA content per nucleus in a flow cytometer, respectively. Fetal hepatocytes consisted of a homogeneous population of diploid (2C) cells. Two different populations of cells were present in regenerating liver, diploid (2C) and tetraploid (4C) cells, that responded to EGF. Glucagon or norepinephrine did not affect EGF stimulation of DNA synthesis in fetal liver cells, but they potentiated EGF response in regenerating hepatocyte cultures. Glucocorticoid hormones (dexamethasone) inhibited DNA synthesis in fetal hepatocyte cultures, an effect potentiated by the presence of glucagon or norepinephrine. In contrast, in regenerating hepatocytes, dexamethasone increased EGF-induced proliferation. EGF-dependent DNA synthesis was inhibited by TGF-beta in both fetal and regenerating cultured hepatocytes. TGF-beta action was partially suppressed by norepinephrine in regenerating hepatocytes, but was without effect in fetal hepatocyte cultures, whereas a synergistic action between TGF-beta and dexamethasone inhibiting growth in fetal but not in regenerating hepatocytes was found. Taken together, these results may suggest that there are significant differences between fetal and regenerating hepatocyte growth in their response to various hormones.  相似文献   
117.
Although it is well-established that inositol-containing lipids serve as precursors of intracellular second messenger molecules in chromaffin cells, we describe some findings that show the formation of diacylglycerol from phosphatidylcholine in response to agonist-mediated stimulation. Stimulation of chromaffin cells by acetylcholine produced a high turnover of phosphatidylcholine, as suggested by the release of [3H]choline derived from [3H]-phosphatidylcholine in experiments performed with [3H]choline chloride-prelabeled cells. An enhanced breakdown of phosphatidylcholine was also inferred from the finding of an increased formation of [3H]diacylglycerol in chromaffin cells prelabeled with [3H]glycerol. The diacylglycerol mass that accumulated after stimulation showed a distinct temporal course and seemed to exceed the mass that has been reported to be derived from phosphatidylinositol. In keeping with the purported origin from phosphatidylcholine, diacylglycerol showed a high content in [3H]oleate molecular species. Phospholipase D activity measurements and experiments performed in the presence of propranolol (an inhibitor of phosphatidic acid:phosphohydrolase) suggested that phosphatidylcholine is hydrolyzed by a phospholipase D activity, producing phosphatidic acid, which is subsequently degraded to diacylglycerol, rather than by a phospholipase C. Incubation of chromaffin cells in the presence of atropine before addition of acetylcholine showed complete inhibition of the increased formation of [3H]-diacylglycerol, whereas d-tubocurarine failed to do so. Taken together, these results suggest that acetylcholine activates phosphatidylcholine breakdown and diacylglycerol formation in chromaffin cells via a muscarinic-type receptor.  相似文献   
118.
The preparation of 2,3,4-tri-O-benzyl- (3), 2,3,4-tri-O-acetyl- (4), and 2,3,4-tri-O-benzoyl-N-(2,2-diethoxycarbonylvinyl)-6-O-trityl-beta- D-glucopyranosylamine (5) is described. The reaction of 3-5 with 2,3,4,6-tetra-O-acetyl-alpha-D-glucopyranosyl bromide yields 2,3,4-tri-O-benzyl- (9), 2,3,4-tri-O-acetyl- (10), and 2,3,4-tri-O-benzoyl-N-(2,2-diethoxycarbonylvinyl)-6-O-(2,3,4,6-tet ra-O- acetyl-beta-D-glucopyranosyl)-beta-D-glucopyranosylamine (11), respectively. 2,3,4-Tri-O-benzyl- (6), 2,3,4-tri-O-acetyl- (7), and 2,3,4-tri-O- benzoyl-N-(2,2-diethoxycarbonylvinyl)-beta-D-glucopyranosylamine (8) are also described.  相似文献   
119.
Recombinant cytochrome c peroxidase (CcP) and a W51A mutant of CcP, in contrast to other classical peroxidases, react with phenylhydrazine to give sigma-bonded phenyl-iron complexes. The conclusion that the heme iron is accessible to substrates is supported by the observation that CcP and W51A CcP oxidize thioanisole to the racemic sulfoxide with quantitative incorporation of oxygen from H2O2. Definitive evidence for an open active site is provided by stereoselective epoxidation by both enzymes of styrene, cis-beta-methylstyrene, and trans-beta-methylstyrene. trans-beta-methylstyrene yields exclusively the trans-epoxide, but styrene yields the epoxide and phenylacetaldehyde, and cis-beta-methylstyrene yields both the cis- and trans-epoxides and 1-phenyl-2-propanone. The sulfoxide, stereoretentive epoxides, and 1-phenyl-2-propanone are formed by ferryl oxygen transfer mechanisms because their oxygen atom derives from H2O2. In contrast, the oxygen in the trans-epoxide from the cis-olefin derives primarily from molecular oxygen and is probably introduced by a protein cooxidation mechanism. cis-[1,2-2H]-1-Phenyl-1-propene is oxidized to [1,1-2H]-1-phenyl-2-propanone without a detectable isotope effect on the epoxide:ketone product ratio. The phenyl-iron complex is not formed and substrate oxidation is not observed when the prosthetic group is replaced by delta-meso-ethylheme. CcP thus has a sufficiently open active site to form a phenyl-iron complex, to oxidize thioanisole to the sulfoxide, and to epoxidize styrene and beta-methylstyrene. The results indicate that a ferryl (Fe(IV) = O)/protein radical pair can be coupled to achieve two-electron oxidations. The unique ability of CcP to catalyze monooxygenation reactions does not conflict with its peroxidase function because cytochrome c is oxidized at a distinct surface site (DePillis, G. D., Sishta, B. P., Mauk, A. G., and Ortiz de Montellano, P. R. (1991) J. Biol. Chem. 266, 19334-19341).  相似文献   
120.
Summary The XylS protein is the positive regulator of the TOL plasmid-encoded meta-cleavage pathway for the metabolism of alkylbenzoates in Pseudomonas putida. This protein is activated by a variety of benzoate analogues. To elucidate the functional domains of the regulator and their interactions, several fusions of the XylS C-terminus to MS2 polymerase and of the N-terminus to -galactosidase were constructed but all are inactive. In addition, 15 double mutant xylS genes were constructed in vitro by fusing parts of various mutant genes to produce mutant regulators exhibiting C-terminal and N-terminal amino acid substitutions. The phenotypic properties of the parental single mutant genes, and those of the double mutant genes, suggest that the C-terminal region is involved in binding to DNA sequences at the promoter of the meta-cleavage pathway operon, and that the benzoate effector binding pocket includes critical residues present at both the N-terminal and C-terminal ends of the protein. The intraallelic dominance of the Ile229 (Ser229 Ile) and Val274 (Asp274 Val) substitutions over the N-terminal His4l (Arg4l His) substitution, and the intraallelic dominance of Thr45 (Arg45 Thr) over Ile229 and Val274, support the proposal that these two regions of the regulator interact functionally. Combination of the Leu88 (Trp88 Leu) and Arg256 (Pro256 Arg) substitutions did not suppress the semiconstitutive phenotype conferred by Leu88, but resulted in a protein with altered ability to recognize benzoates. In contrast, the Leu88 semiconstitutive phenotype was suppressed by Va1288 (Asp288 Val), and the double mutant was susceptible to activation by benzoates. The results suggest that intramolecular interactions between the C- and N-terminal regions of XylS are critical for activation of the regulator by the effector.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号