首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   623篇
  免费   41篇
  国内免费   1篇
  2023年   2篇
  2022年   2篇
  2021年   9篇
  2020年   8篇
  2019年   4篇
  2018年   10篇
  2017年   7篇
  2016年   19篇
  2015年   26篇
  2014年   30篇
  2013年   52篇
  2012年   45篇
  2011年   34篇
  2010年   30篇
  2009年   28篇
  2008年   33篇
  2007年   33篇
  2006年   34篇
  2005年   27篇
  2004年   34篇
  2003年   22篇
  2002年   21篇
  2001年   12篇
  2000年   12篇
  1999年   7篇
  1998年   16篇
  1997年   6篇
  1996年   4篇
  1995年   6篇
  1994年   4篇
  1993年   4篇
  1992年   10篇
  1991年   4篇
  1990年   8篇
  1989年   3篇
  1988年   3篇
  1987年   4篇
  1986年   9篇
  1985年   4篇
  1981年   5篇
  1979年   5篇
  1978年   4篇
  1977年   3篇
  1976年   2篇
  1973年   5篇
  1970年   2篇
  1965年   1篇
  1901年   1篇
  1861年   1篇
  1860年   2篇
排序方式: 共有665条查询结果,搜索用时 15 毫秒
51.
Progressing tumors in humans and mice are frequently infiltrated by a highly heterogeneous population of inflammatory myeloid cells that contribute to tumor growth. Among these cells, inflammatory Gr-1(+) monocytes display a high developmental plasticity in response to specific microenvironmental signals, leading to diverse immune functions. These observations raise the question of the immune mechanisms by which inflammatory monocytes may contribute to tumor development. In this study, we found that adoptive transfer of normal inflammatory Gr-1(+) monocytes in tumor-bearing mice promotes tumor growth. In this tumoral environment, these monocytes can differentiate into tolerogenic dendritic cells (DCs) that produce IL-10 and potently induce regulatory T cell responses in vivo. Moreover, diverting the differentiation of Gr-1(+) monocytes into tolerogenic DCs by forced expression of IL-10 soluble receptor and IL-3 in tumor cells improves host immunosurveillance by reducing the regulatory T cell frequency and by inducing immunogenic DCs in the tumor. As a consequence, tumor growth is strongly reduced. Our findings indicate that Gr-1(+) monocytes represent a valuable target for innovative immunotherapeutic strategies against cancer.  相似文献   
52.
53.
54.
Although prostate carcinoma is an aggressive cancer preferentially metastasizing to the bones, many prostate tumors remain localized and confined to the prostate indefinitely. Prediction of the behavior of anatomically localized and moderately differentiated prostate tumors remains difficult because of lack of prognostic markers. Cell motility is an important step in the progression of epithelial tumor toward invasive metastatic carcinomas and changes in the expression and function of adhesion molecules contribute to the acquisition of a more malignant phenotype. Proline-rich tyrosine kinase 2 (Pyk2) is implicated in regulating the organization of actin cytoskeleton, a process critical for cell migration, mitosis, and tumor metastasis. In this report, we investigated whether Pyk2 played a role in the acquisition of an aggressive phenotype in prostate cell. Data reported here demonstrate that loss of Pyk2 kinase function results in induction of cell motility and migration in EPN cells, a line of non-transformed epithelial cells derived from human normal prostate tissue. Changes in motility and migration of prostate cells were associated with changes in the expression of several proteins involved in cell adhesion and reorganization of actin cytoskeleton. Ablation of Pyk2 kinase activity caused a dramatic decrease of the expression of E-cadherin and IRS1 and an increase of the expression of alpha5-integrin. In addition, a massive reorganization of actin cytoskeleton was observed. Our data indicate that Pyk2 plays a central role in the mechanism that regulate cell-cell and cell-substrate interaction and lack of its kinase activity induces prostate cells to acquire a malignant, migrating phenotype.  相似文献   
55.
Isothermal titration calorimetry (ITC) has been applied to the determination of the activity of D-hydantoinase (EC 3.5.2.2) with several substrates by monitoring the heat released during the reaction. The method is based on the proportionality between the reaction rate and the thermal power (heat/time) generated. Microcalorimetric assays carried out at different temperatures provided the dependence of the catalytic rate constant on temperature. We show that ITC assay is a nondestructive method that allows the determination of the catalytic rate constant (kcat), Michaelis constant (KM), activation energy and activation Gibbs energy, enthalpy and entropy of this reaction.  相似文献   
56.
New insights into and novel applications for platelet-rich fibrin therapies   总被引:11,自引:0,他引:11  
The therapeutic use of autologous platelet-rich plasma constitutes a relatively new biotechnology that has been a breakthrough in the stimulation and acceleration of soft-tissue and bone healing. The efficiency of this process lies in the local and continuous delivery of a wide range of growth factors and proteins, mimicking the needs of the physiological wound healing and reparative tissue processes. Consequently, the application of platelet-rich plasma has been extended to many different fields, including orthopedics, sports medicine, dentistry, cosmetic and periodontal medicine and cosmetic, plastic and maxillofacial surgery. This article highlights the use of this technology and discusses some of the obstacles and challenges that need to be addressed to maintain progress in this field.  相似文献   
57.
58.
The Arabidopsis (Arabidopsis thaliana) root epidermal bulger1-1 (reb1-1) mutant (allelic to root hair defective1 [rhd1]) is characterized by a reduced root elongation rate and by bulging of trichoblast cells. The REB1/RHD1 gene belongs to a family of UDP-D-Glucose 4-epimerases involved in the synthesis of D-Galactose (Gal). Our previous study showed that certain arabinogalactan protein epitopes were not expressed in bulging trichoblasts of the mutant. In this study, using a combination of microscopical and biochemical methods, we have investigated the occurrence and the structure of three major Gal-containing polysaccharides, namely, xyloglucan (XyG), rhamnogalacturonan (RG)-I, and RG-II in the mutant root cell walls. Our immunocytochemical data show that swollen trichoblasts were not stained with the monoclonal antibody CCRC-M1 specific for alpha-L-Fucp-(1-->2)-beta-D-Galp side chains of XyG, whereas they were stained with anti-XyG antibodies specific for XyG backbone. In addition, analysis of a hemicellulosic fraction from roots demonstrates the presence of two structurally different XyGs in reb1-1. One is structurally similar to wild-type XyG and the other is devoid of fuco-galactosylated side chains and has the characteristic of being insoluble. Similar to anti-XyG antibodies, anti-bupleuran 2IIC, a polyclonal antibody specific for galactosyl epitopes associated with pectins, stained all root epidermal cells of both wild type and reb1-1. Similarly, anti-RG-II antibodies also stained swollen trichoblasts in the mutant. In addition, structural analysis of pectic polymers revealed no change in the galactosylation of RG-I and RG-II isolated from reb1-1 root cells. These findings demonstrate that the reb1-1 mutation affects XyG structure, but not that of pectic polysaccharides, thus lending support to the hypothesis that biosynthesis of Gal as well as galactosylation of complex polysaccharides is regulated at the polymer level.  相似文献   
59.
In the present study, we evidence how in breast cancer cells low doses of Taxol for 18 h determined the upregulation of p53 and p21 waf expression concomitantly with a decrease of the anti-apoptotic Bcl-2. P53 and its gene product, the mdm2 protein, in treated cells exhibits a prevalent nuclear compartmentalization, thus potentiating p53 transactivatory properties. Indeed, the most important finding of this study consists with the evidence that Taxol at lower concentrations is able to produce the activation of p21 promoter via p53. Prolonged exposure of MCF-7 cells to Taxol (48 h) resulted in an increased co-association between p21 and PCNA compared to control and this well fits with the simultaneous block of cell cycle into the G2/M phase.  相似文献   
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号