首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   346篇
  免费   25篇
  2022年   4篇
  2021年   2篇
  2020年   3篇
  2019年   5篇
  2018年   2篇
  2017年   7篇
  2016年   8篇
  2015年   8篇
  2014年   9篇
  2013年   23篇
  2012年   20篇
  2011年   23篇
  2010年   16篇
  2009年   12篇
  2008年   12篇
  2007年   16篇
  2006年   8篇
  2005年   13篇
  2004年   15篇
  2003年   10篇
  2002年   11篇
  2001年   7篇
  2000年   6篇
  1999年   5篇
  1998年   2篇
  1997年   5篇
  1994年   4篇
  1993年   2篇
  1992年   7篇
  1991年   6篇
  1989年   5篇
  1987年   2篇
  1986年   2篇
  1985年   3篇
  1984年   3篇
  1983年   2篇
  1982年   4篇
  1979年   4篇
  1976年   8篇
  1975年   4篇
  1974年   3篇
  1973年   3篇
  1971年   2篇
  1970年   7篇
  1969年   8篇
  1968年   13篇
  1967年   3篇
  1966年   7篇
  1965年   3篇
  1964年   5篇
排序方式: 共有371条查询结果,搜索用时 31 毫秒
41.
Serotonin is a signal molecule with a wide range of functions in vertebrates. In Antarctic fishes, the serotonergic system has been studied in the brain, revealing differences from temperate fishes related to the long-term cold adaptation. To date, little is known regarding the peripheral nervous system, and no information is available for the stomach. In the present work, we contribute to fill the gaps by investigating the presence and the immunohistochemical distribution of serotonin in the stomach of the Antarctic silverfish Pleuragramma antarcticum, a cold-adapted key species of the Southern Ocean shelf food web. The main aim was to investigate the serotonergic system at the gastric level, in order to reveal possible peculiarities related to long-term cold adaptation, similar to the ones seen in the central nervous system of Antarctic fishes. Serotonin immunoreactivity was detected in the pyloric and cardiac mucosa of P. antarcticum stomach with immunopositive cells in the pyloric and cardiac surface epithelia and in the tubular glands. No immunopositive fibers and neuronal cell bodies were found. Our results highlight that the serotonin distribution pattern at the gastric level is similar to that described in temperate teleosts. This finding suggests that in P. antarcticum, long-term adaptations to the Antarctic condition do not affect the serotonergic system at the gastric level. In addition, our data constitute the baseline information for further investigations aimed at clarifying the effects of short-term temperature variations on the gastric serotonergic system of Antarctic species in the frame of the global climate change.  相似文献   
42.
TRF1 and TRF2 are key proteins in human telomeres, which, despite their similarities, have different behaviors upon DNA binding. Previous work has shown that unlike TRF1, TRF2 condenses telomeric, thus creating consequential negative torsion on the adjacent DNA, a property that is thought to lead to the stimulation of single-strand invasion and was proposed to favor telomeric DNA looping. In this report, we show that these activities, originating from the central TRFH domain of TRF2, are also displayed by the TRFH domain of TRF1 but are repressed in the full-length protein by the presence of an acidic domain at the N-terminus. Strikingly, a similar repression is observed on TRF2 through the binding of a TERRA-like RNA molecule to the N-terminus of TRF2. Phylogenetic and biochemical studies suggest that the N-terminal domains of TRF proteins originate from a gradual extension of the coding sequences of a duplicated ancestral gene with a consequential progressive alteration of the biochemical properties of these proteins. Overall, these data suggest that the N-termini of TRF1 and TRF2 have evolved to finely regulate their ability to condense DNA.  相似文献   
43.
A thin film of poly(hydroxymethylsiloxane) (PHMS) has been deposited on glass dishes and tested as artificial support material for vascularization from mixed cultures of endothelial cells (EC) and pericytes (PC). The EC/PC co-cultures adhered massively on PHMS, with the formation of net-like microcapillary structures. Such evidence was not found on control glass substrates in the same co-culture conditions neither on PHMS for EC and PC in monocultures. The physicochemical characterization of PHMS and control glass surface by time-of-flight secondary ion mass spectrometry, X-ray photoelectron spectroscopy, water contact angle and atomic force microscopy, pointed to the main role of the polymer hydrophobilicy to explain the observed cellular behavior. Moreover, enhanced intercellular cross-talk was evidenced by the up-regulation and activation of cytoplasmic and Ca(2+)-independent phospholipase A(2) (cPLA(2) and iPLA(2)) expression and cPLA(2) phosphorylation, leading to the cell proliferation and microcapillary formation on the PHMS surface, as evidenced by confocal microscopy analyses. Co-cultures, established with growth-arrested PCs by treatment with mitomycin C, showed an increase in EC proliferation on PHMS. AACOCF(3) or co-transfection with cPLA(2) and iPLA(2)siRNA reduced cell proliferation. The results highlight the major role played by EC/PC cross-talk as well as the hydrophobic character of the substrate surface, to promote microcapillary formation. Our findings suggest an attractive strategy for vascular tissue engineering and provide new details on the interplay of artificial substrates and capillary formation.  相似文献   
44.
45.

Background

The transient receptor potential ankyrin 1 (TRPA1) channel, localized to airway sensory nerves, has been proposed to mediate airway inflammation evoked by allergen and cigarette smoke (CS) in rodents, via a neurogenic mechanism. However the limited clinical evidence for the role of neurogenic inflammation in asthma or chronic obstructive pulmonary disease raises an alternative possibility that airway inflammation is promoted by non-neuronal TRPA1.

Methodology/Principal Findings

By using Real-Time PCR and calcium imaging, we found that cultured human airway cells, including fibroblasts, epithelial and smooth muscle cells express functional TRPA1 channels. By using immunohistochemistry, TRPA1 staining was observed in airway epithelial and smooth muscle cells in sections taken from human airways and lung, and from airways and lung of wild-type, but not TRPA1-deficient mice. In cultured human airway epithelial and smooth muscle cells and fibroblasts, acrolein and CS extract evoked IL-8 release, a response selectively reduced by TRPA1 antagonists. Capsaicin, agonist of the transient receptor potential vanilloid 1 (TRPV1), a channel co-expressed with TRPA1 by airway sensory nerves, and acrolein or CS (TRPA1 agonists), or the neuropeptide substance P (SP), which is released from sensory nerve terminals by capsaicin, acrolein or CS), produced neurogenic inflammation in mouse airways. However, only acrolein and CS, but not capsaicin or SP, released the keratinocyte chemoattractant (CXCL-1/KC, IL-8 analogue) in bronchoalveolar lavage (BAL) fluid of wild-type mice. This effect of TRPA1 agonists was attenuated by TRPA1 antagonism or in TRPA1-deficient mice, but not by pharmacological ablation of sensory nerves.

Conclusions

Our results demonstrate that, although either TRPV1 or TRPA1 activation causes airway neurogenic inflammation, solely TRPA1 activation orchestrates an additional inflammatory response which is not neurogenic. This finding suggests that non-neuronal TRPA1 in the airways is functional and potentially capable of contributing to inflammatory airway diseases.  相似文献   
46.
Central nervous system (CNS) receives peripheral relevant information that are able to regulate individual's energy balance through metabolic, neural, and endocrine signals. Ingested nutrients come into contact with multiple sites in the gastrointestinal tract that have the potential to alter peptide and neural signaling. There is a strong relationship between CNS and those peripheral signals (as gastrointestinal hormones) in the control of food intake. The purpose of this review is to give updated information about the role of gut hormones as mediators of feeding behavior and of different nutrients in modulating gut hormones production. The role of gut hormones in the pathogenesis of emerging diseases as obesity and non-alcoholic fatty liver disease (NAFLD) is also discussed together with the possible role of these peripheral signals as targets of future therapeutic options.  相似文献   
47.
Adarotene belongs to the so-called class of atypical retinoids. The presence of the phenolic hydroxyl group on Adarotene structure allows a rapid O-glucuronidation as a major mechanism of elimination of the drug, favoring a fast excretion of its glucuronide metabolite in the urines. A series of ether, carbamate and ester derivatives was synthesized. All of them were studied and evaluated for their stability at different pH. The cytotoxic activity in vitro on NCI-H460 non-small cell lung carcinoma and A2780 ovarian tumor cell lines was also tested. A potential back-up of Adarotene has been selected to be evaluated in tumor models.  相似文献   
48.
In the framework of the I.C.E.FISH (International Collaborative Effort on Antarctic Fish Adaptive Evolution) project, during the 1998-1999 season at the Italian shore-based Terra Nova Bay Station, the broad fields of adaptation and evolution of the fish suborder Notothenioidei were tackled through the integration of many disciplines. As a representative contribution of I.C.E.FISH, a cytogenetic study of the bathydraconid fish Gymnodraco acuticeps is reported. The Bathydraconidae is a heterogeneous notothenioid taxon whose intra-family relationships are very uncertain. The conventional karyotype and the location of nuclear ribosomal genes, by means of fluorescence in situ hybridisation, contributed to species-specific characterisation and provided the basis for comparative analyses. The karyotype of G. acuticeps consists of 48 chromosomes (2 metacentric, 2 submetacentric and 44 acrocentric); major ribosomal cistrons correspond to a large region in a single chromosome pair. Mapping of the available karyotypic data on a molecular phylogenetic tree provided information on chromosomal diversification during the cladogenesis of the bathydraconids.  相似文献   
49.
For sustainable development, biodiversity conservation and life-quality improvement must be simultaneously considered. Molecular techniques have greatly impacted biotechnology. These methods have, in particular, improved the capability to investigate the fine differences among organisms and, as a consequence, to better investigate the effects on environmental factors on them. We propose an approach to support the optimal selection of molecular probes for barcoding application in many biotechnological fields. The aim of our work is specificity maximization. To this purpose, we have integrated a filter system based on wavelet transforms with biological knowledge about the sequence proneness to mutation and post-translational modification. Specifically, we have tested the proposed method on ITS1 sequences that are a region of the rRNA locus. Our analysis has shown the presence of other local relative stable conformations in addition to known cleavage site. Their characteristics differ within the group of mammals selected for our analysis. These variations could be used to design new species-specific barcoding probes or other quick molecular screening tools.  相似文献   
50.
Cell-sized polyelectrolyte capsules functionalized with a redox-driven proton pump protein were assembled for the first time. The interaction of polyelectrolyte microcapsules, fabricated by electrostatic layer-by-layer assembly, with cytochrome c oxidase molecules was investigated. We found that the cytochrome c oxidase retained its functionality, that the functionalized microcapsules interacting with cytochrome c oxidase were permeable and that the permeability characteristics of the microcapsule shell depend on the shell components. This work provides a significant input towards the fabrication of an integrated device made of biological components and based on specific biomolecular functions and properties.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号