首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   346篇
  免费   24篇
  370篇
  2023年   1篇
  2022年   2篇
  2021年   2篇
  2020年   2篇
  2019年   6篇
  2018年   4篇
  2017年   1篇
  2016年   7篇
  2015年   17篇
  2014年   20篇
  2013年   20篇
  2012年   33篇
  2011年   41篇
  2010年   17篇
  2009年   17篇
  2008年   16篇
  2007年   19篇
  2006年   12篇
  2005年   16篇
  2004年   19篇
  2003年   12篇
  2002年   13篇
  2001年   4篇
  2000年   3篇
  1999年   5篇
  1998年   5篇
  1997年   3篇
  1996年   3篇
  1995年   2篇
  1994年   4篇
  1993年   9篇
  1992年   3篇
  1991年   4篇
  1990年   5篇
  1989年   2篇
  1988年   4篇
  1987年   4篇
  1986年   3篇
  1985年   1篇
  1984年   3篇
  1979年   1篇
  1975年   1篇
  1974年   1篇
  1973年   1篇
  1963年   2篇
排序方式: 共有370条查询结果,搜索用时 0 毫秒
21.
Leishmania species of the subgenus Viannia and especially Leishmania Viannia guyanensis are responsible for a large proportion of New World leishmaniasis cases. Since a recent publication on Leishmania Viannia braziliensis, the debate on the mode of reproduction of Leishmania parasites has been reopened. A predominant endogamic reproductive mode (mating with relatives), together with strong Wahlund effects (sampling of strains from heterogeneous subpopulations), was indeed evidenced. To determine whether this hypothesis can be generalized to other Leishmania Viannia species, we performed a population genetic study on 153 human strains of L. (V.) guyanensis from French Guiana based on 12 microsatellite loci. The results revealed important homozygosity and very modest linkage disequilibrium, which is in agreement with a high level of sexual recombination and substantial endogamy. These results also revealed a significant isolation by distance with relatively small neighbourhoods and hence substantial viscosity of Leishmania populations in French Guiana. These results are of epidemiological relevance and suggest a major role for natural hosts and/or vectors in parasite strain diffusion across the country as compared to human hosts.  相似文献   
22.
The Protein C anticoagulant pathway regulates blood coagulation by preventing the inadequate formation of thrombi. It has two main plasma components: protein C and protein S. Individuals with protein C or protein S deficiency present a dramatically increased incidence of thromboembolic disorders. Here, we present the results of a genome-wide association study (GWAS) for protein C and protein S plasma levels in a set of extended pedigrees from the Genetic Analysis of Idiopathic Thrombophilia (GAIT) Project. A total number of 397 individuals from 21 families were typed for 307,984 SNPs using the Infinium® 317 k Beadchip (Illumina). Protein C and protein S (free, functional and total) plasma levels were determined with biochemical assays for all participants. Association with phenotypes was investigated through variance component analysis. After correcting for multiple testing, two SNPs for protein C plasma levels (rs867186 and rs8119351) and another two for free protein S plasma levels (rs1413885 and rs1570868) remained significant on a genome-wide level, located in and around the PROCR and the DNAJC6 genomic regions respectively. No SNPs were significantly associated with functional or total protein S plasma levels, although rs1413885 from DNAJC6 showed suggestive association with the functional protein S phenotype, possibly indicating that this locus plays an important role in protein S metabolism. Our results provide evidence that PROCR and DNAJC6 might play a role in protein C and free protein S plasma levels in the population studied, warranting further investigation on the role of these loci in the etiology of venous thromboembolism and other thrombotic diseases.  相似文献   
23.
24.
ATP sulfurylase (ATP: sulfate adenylyltransferase, EC 2.7.7.4) was extensively purified from trophosome tissue of Riftia pachyptila, a tube worm that thrives in deep ocean hydrothermal vent communities. The enzyme is probably derived from the sulfide-oxidizing bacteria that densely colonize the tissue. Glycerol (20% v/v) protected the enzyme against inactivation during purification and storage. The native enzyme appears to be a dimer (MW 90 kDa +/- 10%) composed of identical size subunits (MW 48 kDa +/- 5%). At pH 8.0, 30 degrees C, the specific activities (units x mg protein-1) of the most highly purified sample are as follows: ATP synthesis, 370; APS synthesis, 23; molybdolysis, 65; APSe synthesis or selenolysis, 1.9. The Km values for APS and PPi at 5 mM Mg2+ are 6.3 and 14 microM, respectively. In the APS synthesis direction, the Km values for MgATP and SO4(2-) are 1.7 and 27 mM, respectively. The Km values for MgATP and MoO4(2-) in the molybdolysis reaction are 80 and 150 microM, respectively. The Kia for MgATP is 0.65 mM. APS is a potent inhibitor of molybdolysis, competitive with both MgATP and MoO4(2-) (Kiq = 2.2 microM). However, PPi (+ Mg2+) is virtually inactive as a molybdolysis inhibitor. Oxyanion dead end inhibitors competitive with SO4(2-) include (in order of decreasing potency) ClO4- greater than FSO3- (Ki = 22 microM) greater than ClO3- greater than NO3- greater than S2O3(2-) (Ki's = 5 and 43 mM). FSO3- is uncompetitive with MgATP, but S2O3(2-) is noncompetitive. Each subunit contains two free SH groups, at least one of which is functionally essential. ATP, MgATP, SO4(2-), MoO4(2-), and APS each protect against inactivation by excess 5,5'-dithiobis-(2-nitrobenzoate). FSO3- is ineffective as a protector unless MgATP is present. PPi (+Mg2+) does not protect against inactivation. Riftia trophosome contains little or no "ADP sulfurylase." The high trophosome level of ATP sulfurylase (67-176 ATP synthesis units x g fresh wt tissue-1 from four different specimens, corresponding to 4-10 microM enzyme sites), the high kcat of the enzyme for ATP synthesis (296 s-1), and the high Km's for MgATP and SO4(2-) are consistent with a role in ATP formation during sulfide oxidation, i.e., the physiological reaction is APS + MgPPi in equilibrium SO4(2-) + MgATP.  相似文献   
25.
26.
After nearly three decades of searching for a vaccine against HIV, a cure for this pandemic disease still remains elusive. The low immunogenicity of the surface proteins and the huge variability of the virus, together with the immunocompromised status of the host, have made developing an HIV vaccine an uphill battle. Over the past few years, both immunogen design and immunization strategies have improved, providing hope for future, although the anti-HIV responses achieved still remain modest. As developing a prophylactic vaccine seems unlikely nowadays, efforts have focused on alternative therapeutic immunization approaches, although these still need to be further optimized. Using an immunomodulator capable of restoring immune function in the context of infection, thereby boosting cell-mediated and humoral responses, could be critical in effectively improving current therapeutic approaches. Adenosine deaminase, a protein with a pivotal role in T-cell co-stimulation, has been shown to robustly enhance specific T-cell responses against HIV in vitro. Although its role in humoral responses has not yet been assessed, genetic defects in this enzyme are associated with impaired cellular and humoral responses. Importantly, this molecule is already commercially available pharmaceutically and, therefore, it fulfils all the requirements to be assayed as an anti-HIV vaccine adjuvant.  相似文献   
27.
Catalases are ubiquitous enzymes that prevent cell oxidative damage by degrading hydrogen peroxide to water and oxygen (2H(2)O(2) → 2H(2)O+O(2)) with high efficiency. The enzyme is first oxidized to a high-valent iron intermediate, known as Compound I (Cpd I, Por(·+)-Fe(IV)=O) which, at difference from other hydroperoxidases, is reduced back to the resting state by further reacting with H(2)O(2). The normal catalase activity is reduced if Cpd I is consumed in a competing side reaction, forming a species named Cpd I*. In recent years, Density Functional Theory (DFT) methods have unraveled the electronic configuration of these high-valent iron species, helping to assign the intermediates trapped in the crystal structures of oxidized catalases. It has been demonstrated that the a priori assumption that the H(+)/H(-) type of mechanism for Cpd I reduction leads to the generation of singlet oxygen is not justified. Moreover, it has been shown by ab initio metadynamics simulations that two pathways are operative for Cpd I reduction: a His-mediated mechanism (described as H·/H(+) + e(-)) in which the distal His acts as an acid-base catalyst and a direct mechanism (described as H·/H·) in which the distal His does not play a direct role. Independently of the mechanism, the reaction proceeds by two one-electron transfers rather than one two-electron transfer, as previously assumed. Electron transfer to Cpd I, regardless of whether the electron is exogenous or endogenous, facilitates protonation of the oxoferryl group, to the point that formation of Cpd I* may be controlled by the easiness of protonation of reduced Cpd I.  相似文献   
28.
Massive consumption of gelatinous plankton by Mediterranean apex predators   总被引:1,自引:0,他引:1  
Stable isotopes of carbon and nitrogen were used to test the hypothesis that stomach content analysis has systematically overlooked the consumption of gelatinous zooplankton by pelagic mesopredators and apex predators. The results strongly supported a major role of gelatinous plankton in the diet of bluefin tuna (Thunnus thynnus), little tunny (Euthynnus alletteratus), spearfish (Tetrapturus belone) and swordfish (Xiphias gladius). Loggerhead sea turtles (Caretta caretta) in the oceanic stage and ocean sunfish (Mola mola) also primarily relied on gelatinous zooplankton. In contrast, stable isotope ratios ruled out any relevant consumption of gelatinous plankton by bluefish (Pomatomus saltatrix), blue shark (Prionace glauca), leerfish (Lichia amia), bonito (Sarda sarda), striped dolphin (Stenella caerueloalba) and loggerhead sea turtles (Caretta caretta) in the neritic stage, all of which primarily relied on fish and squid. Fin whales (Balaenoptera physalus) were confirmed as crustacean consumers. The ratios of stable isotopes in albacore (Thunnus alalunga), amberjack (Seriola dumerili), blue butterfish (Stromaeus fiatola), bullet tuna (Auxis rochei), dolphinfish (Coryphaena hyppurus), horse mackerel (Trachurus trachurus), mackerel (Scomber scombrus) and pompano (Trachinotus ovatus) were consistent with mixed diets revealed by stomach content analysis, including nekton and crustaceans, but the consumption of gelatinous plankton could not be ruled out completely. In conclusion, the jellyvorous guild in the Mediterranean integrates two specialists (ocean sunfish and loggerhead sea turtles in the oceanic stage) and several opportunists (bluefin tuna, little tunny, spearfish, swordfish and, perhaps, blue butterfish), most of them with shrinking populations due to overfishing.  相似文献   
29.
The role of the pineal gland is to translate the rhythmic cycles of night and day encoded by the retina into hormonal signals that are transmitted to the rest of the neuronal system in the form of serotonin and melatonin synthesis and release. Here we describe that the production of both melatonin and serotonin by the pineal gland is regulated by a circadian-related heteromerization of adrenergic and dopamine D4 receptors. Through α1 B-D4 and β1-D4 receptor heteromers dopamine inhibits adrenergic receptor signaling and blocks the synthesis of melatonin induced by adrenergic receptor ligands. This inhibition was not observed at hours of the day when D4 was not expressed. These data provide a new perspective on dopamine function and constitute the first example of a circadian-controlled receptor heteromer. The unanticipated heteromerization between adrenergic and dopamine D4 receptors provides a feedback mechanism for the neuronal hormone system in the form of dopamine to control circadian inputs.  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号