首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   37275篇
  免费   2679篇
  国内免费   251篇
  2023年   298篇
  2022年   428篇
  2021年   909篇
  2020年   696篇
  2019年   785篇
  2018年   1209篇
  2017年   992篇
  2016年   1321篇
  2015年   1704篇
  2014年   1811篇
  2013年   2447篇
  2012年   3132篇
  2011年   3062篇
  2010年   1820篇
  2009年   1531篇
  2008年   2322篇
  2007年   2118篇
  2006年   2032篇
  2005年   1766篇
  2004年   1682篇
  2003年   1541篇
  2002年   1453篇
  2001年   620篇
  2000年   684篇
  1999年   473篇
  1998年   351篇
  1997年   306篇
  1996年   237篇
  1995年   240篇
  1994年   227篇
  1993年   186篇
  1992年   176篇
  1991年   176篇
  1990年   131篇
  1989年   95篇
  1988年   104篇
  1987年   84篇
  1986年   53篇
  1985年   100篇
  1984年   113篇
  1983年   63篇
  1982年   74篇
  1981年   75篇
  1980年   76篇
  1979年   55篇
  1978年   57篇
  1977年   50篇
  1976年   42篇
  1975年   37篇
  1974年   32篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
971.
This study contributes to the investigation related to guest–host interactions between the chemotherapeutic agent cisplatin and a functionalised silica matrix in order to improve and find new materials such as drug carriers. The adsorption of cisplatin and its complexes, cis-[PtCl(NH3)2]+ and cis-[Pt(NH3)2]2+, on a SH-functionalised SiO2(111) surface has been studied by the atom superposition and electron delocalisation method. The adiabatic energy curves for the adsorption of the drug and its products on the delivery system were considered. The electronic structure and bonding analysis were also performed. The molecule and their complex are adsorbed on the functionalised surface resulting in a major absorption of the cis-[Pt(NH3)2]2+ complex. The molecule–surface interactions are formed via –SH group. The molecule/complexes SH electron-donating effect plays an important role in the catalytic reaction. The more important drug–carrier interactions occur through the Cl–H bond for the adsorption of cis-[PtCl2(NH3)2] and cis-[PtCl(NH3)2]+, and through the Pt–S and Pt–H interactions for cis-[Pt(NH3)2]2+ adsorption. When the new interactions are formed, the functionalised carrier maintains their matrix properties while the molecule is the most affected after adsorption. The Pt atomic orbitals present the most important changes during adsorption.  相似文献   
972.
In this paper, the melting of ice 1h is studied using molecular dynamics (MD). Common potential functions employed in the MD simulations include SPC/E, TIP4P, TIP5P, TIP4/ice and TIP5P/E. We first conducted melting of ice bulks and then studied the melting speed of the ice/water interface during ice melting. It is found that various potentials result in similar ice-melting phenomena. The result is compared with the analytical solution for phase change problem. We also studied size effects and temperature gradient effects on ice melting.  相似文献   
973.
The migratory route of neural progenitor/precursor cells (NPC) has a central role in central nervous system development. Although the role of the chemokine CXCL12 in NPC migration has been described, the intracellular signaling cascade involved remains largely unclear. Here we studied the molecular mechanisms that promote murine NPC migration in response to CXCL12, in vitro and ex vivo. Migration was highly dependent on signaling by the CXCL12 receptor, CXCR4. Although the JAK/STAT pathway was activated following CXCL12 stimulation of NPC, JAK activity was not necessary for NPC migration in vitro. Whereas CXCL12 activated the PI3K catalytic subunits p110α and p110β in NPC, only p110β participated in CXCL12-mediated NPC migration. Ex vivo experiments using organotypic slice cultures showed that p110β blockade impaired NPC exit from the medial ganglionic eminence. In vivo experiments using in utero electroporation nonetheless showed that p110β is dispensable for radial migration of pyramidal neurons. We conclude that PI3K p110β is activated in NPC in response to CXCL12, and its activity is necessary for immature interneuron migration to the cerebral cortex.  相似文献   
974.
BACE1 is an aspartyl protease with a very relevant role in medicinal chemistry related to Alzheimer Disease since it has demonstrated to be a promising therapeutic target for inhibition and possible control for the progress of the peptide accumulation characteristic of this pathology. The enzymatic activity of this protein is given by the aspartic dyad, Asp93 and Asp289, which can adopt several protonation states depending on the chemical nature of its inhibitors, this is, monoprotonated, diprotonated and di-deprotonated states. In the present study, the analysis of the population density, for a series of protein-inhibitor molecular dynamics simulations, was carried out to identify the most feasible protonation state adopted by the catalytic dyad in the presence of tertiary carbinamine (TC) transition state analog inhibitors. The results revealed that the monoprotonated Asp289i state, in which the Asp93 and Asp289 residue side chains are deprotonated and protonated on the inner oxygen, respectively, is the most preferred in the presence of TC family inhibitors. This result was obtained after evaluating, for all 9 possible protonation state configurations, the individual and combined population densities of a set of parameters sensitive to protonation state of the Aspartic dyad, using an X-ray experimental BACE1/TC crystallographic structure as reference. This case study demonstrates again the usefulness of the concept of population density as a quantitative tool to establish the most stable system settings, among all possible, by measuring the level of occurrence of simultaneous events obtained from a sampling over time. These results will help to clear the phenomena related to the TCs inhibitory pathway, as well as assist in the design of better TC inhibitors against Alzheimer’s protease.  相似文献   
975.
Abstract

Adenosine receptors (ARs) belong to family A of GPCRs that are involved in many diseases, including cerebral and cardiac ischemic diseases, immune and inflammatory disorders, etc. Thus, they represent important therapeutic targets to treat these conditions. Computational techniques such as molecular dynamics (MD) simulations permit researchers to obtain structural information about these proteins, and principal component analysis (PCA) allows for the identification of collective motions. There are available structures for the active form (3QAK) and the inactive form (3EML) of A2AR which permit us to gain insight about their activation/inactivation mechanism. In this work, we have proposed an inverse strategy using MD simulations where the active form was coupled to the antagonist caffeine and the inactive form was coupled to adenosine agonist. Moreover, we have included four reported thermostabilizing mutations in the inactive form to study A2AR structural differences under different conditions. Some observations stand out from the PCA studies. For instance, the apo structures showed remarkable similarities, and the principal components (PCs) were rearranged in a ligand-dependent manner. Additionally, the active conformation was less stable compared to the inactive one. Some PCs inverted their direction in the presence of a ligand, and comparison of the PCs between 3EML and 3EML_ADN showed that adenosine induced major changes in the structure of A2AR. Rearrangement of PCs precedes and drives conformational changes that occur after ligand binding. Knowledge about these conformational changes provides important insights about the activity of A2AR.  相似文献   
976.
Abstract

A recently reported optimization method, known as Threshold Accepting, was tested for the purpose of locating the structure of several peptide molecules with the lowest conformational energy. A comparison with previous results obtained with the Simulated Annealing technique was made. Our study indicate Threshold Accepting as a better technique in locating such structures.  相似文献   
977.
Abstract

The enzyme 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) is mainly involved in the regulation of cholesterol biosynthesis. HMGR catalyses the reduction of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) to mevalonate at the expense of two NADPH molecules in a two-step reversible reaction. In the present study, we constructed a model of human HMGR (hHMGR) to explore the conformational changes of HMGR in complex with HMG-CoA and NADPH. In addition, we analysed the complete sequence of the Flap domain using molecular dynamics (MD) simulations and principal component analysis (PCA). The simulations revealed that the Flap domain plays an important role in catalytic site activation and substrate binding. The apo form of hHMGR remained in an open state, while a substrate-induced closure of the Flap domain was observed for holo hHMGR. Our study also demonstrated that the phosphorylation of Ser872 induces significant conformational changes in the Flap domain that lead to a complete closure of the active site, suggesting three principal conformations for the first stage of hHMGR catalysis. Our results were consistent with previous proposed models for the catalytic mechanism of hHMGR.

Communicated by Ramaswamy H. Sarma  相似文献   
978.
979.
980.
In recent years, the diagnosis of cardiovascular disease (CVD) has increased its potential, also thanks to mass spectrometry (MS) proteomics. Modern MS proteomics tools permit analyzing a variety of biological samples, ranging from single cells to tissues and body fluids, like plasma and urine. This approach enhances the search for informative biomarkers in biological samples from apparently healthy individuals or patients, thus allowing an earlier and more precise diagnosis and a deeper comprehension of pathogenesis, development and outcome of CVD to further reduce the enormous burden of this disease on public health. In fact, many differences in protein expression between CVD‐affected and healthy subjects have been detected, but only a few of them have been useful to establish clinical biomarkers because they did not pass the verification and validation tests. For a concrete clinical support of MS proteomics to CVD, it is, therefore, necessary to: ameliorate the resolution, sensitivity, specificity, throughput, precision, and accuracy of MS platform components; standardize procedures for sample collection, preparation, and analysis; lower the costs of the analyses; reduce the time of biomarker verification and validation. At the same time, it will be fundamental, for the future perspectives of proteomics in clinical trials, to define the normal protein maps and the global patterns of normal protein levels, as well as those specific for the different expressions of CVD. J. Cell. Biochem. 114: 7–20, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号