首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   293篇
  免费   35篇
  328篇
  2022年   2篇
  2021年   3篇
  2020年   3篇
  2018年   5篇
  2016年   9篇
  2015年   7篇
  2014年   11篇
  2013年   20篇
  2012年   15篇
  2011年   16篇
  2010年   10篇
  2009年   9篇
  2008年   8篇
  2007年   15篇
  2006年   8篇
  2005年   12篇
  2004年   10篇
  2003年   12篇
  2002年   12篇
  2001年   13篇
  2000年   7篇
  1999年   7篇
  1997年   2篇
  1996年   5篇
  1995年   8篇
  1994年   5篇
  1993年   4篇
  1992年   4篇
  1991年   5篇
  1990年   8篇
  1989年   9篇
  1988年   8篇
  1987年   6篇
  1986年   7篇
  1985年   2篇
  1984年   5篇
  1983年   2篇
  1982年   4篇
  1981年   4篇
  1980年   3篇
  1979年   3篇
  1978年   2篇
  1976年   2篇
  1975年   3篇
  1974年   2篇
  1973年   3篇
  1972年   1篇
  1968年   1篇
  1967年   1篇
  1937年   1篇
排序方式: 共有328条查询结果,搜索用时 15 毫秒
71.
Inhibition of lipid peroxidation by nitroxide radicals and their corresponding hydroxylamines was investigated. The nitroxides were either oxazolidines or piperidines, differing in substitution of the backbone of the molecule (a five or six-membered ring structure, respectively). Concentration requirements for 50% inhibition of microsomal lipid peroxidation varied from 340 to 6 microM for the nitroxides, and from 120 to 3 microM for the hydroxylamines, correlating with lipophilicity and chemical structure. Intramembrane concentrations required for 50% inhibition was independent of lipophilicity when peroxidation was initiated with ADP-Fe2+ but increased with lipophilicity when peroxidation was initiated with t-butylhydroperoxide. During studies of the kinetics of the inhibition, two modes were seen: a delay or a decreased rate of the process. The former mode was seen with the more lipophilic inhibitors. The mechanism of inhibition was similar for all nitroxides and consisted of the following three major components: blocking of primary initiation, prevention of secondary (peroxide-dependent) initiation, and scavenging of various lipoid radicals in the membrane, the major mode of action of the hydroxylamines. Inhibitory efficiency was interpreted in terms of steric hindrance, diffusibility, regeneration of inhibitor, and ability to interact with hydrophilic sites in a hydrophobic environment.  相似文献   
72.
73.
74.
Viral myocarditis is a disease with a high morbidity and mortality. The pathogenesis of this disease remains poorly characterized, with components of both direct virus-mediated and secondary inflammatory and immune responses contributing to disease. Apoptosis has increasingly been viewed as an important mechanism of myocardial injury in noninfectious models of cardiac disease, including ischemia and failure. Using a reovirus murine model of viral myocarditis, we characterized and targeted apoptosis as a key mechanism of virus-associated myocardial injury in vitro and in vivo. We demonstrated caspase-3 activation, in conjunction with terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling and annexin binding, in cardiac myocytes after myocarditic viral infection in vitro. We also demonstrated a tight temporal and geographical correlation between caspase-3 activation, histologic injury, and viral load in cardiac tissue after myocarditic viral infection in vivo. Two pharmacologic agents that broadly inhibit caspase activity, Q-VD-OPH and Z-VAD(OMe)-FMK, effectively inhibited virus-induced cellular death in vitro. The inhibition of caspase activity in vivo by the use of pharmacologic agents as well as genetic manipulation reduced virus-induced myocardial injury by 40 to 60% and dramatically improved survival in infected caspase-3-deficient animals. This study indicates that apoptosis plays a critical role in mediating cardiac injury in the setting of viral myocarditis and is the first demonstration that caspase inhibition may serve as a novel therapeutic strategy for this devastating disease.  相似文献   
75.
Three satellite DNA families were identified in three species of burying beetles, Nicrophorus orbicollis, N. marginatus, and N. americanus. Southern hybridization and nucleotide sequence analysis of individual randomly cloned repeats shows that these satellite DNA families are highly abundant in the genome, are composed of unique repeats, and are species-specific. The repeats do not have identifiable core elements or substructures that are similar in all three families, and most interspecific sequence similarity is confined to homopolymeric runs of A and T. Satellite DNA from N. marginatus and N. americanus show single-base-pair indels among repeats, but single-nucleotide substitutions characterize most of the repeat variability. Although the repeat units are of similar lengths (342, 350, and 354 bp) and A + T composition (65%, 71%, and 71%, respectively), the average nucleotide divergence among sequenced repeats is very low (0.18%, 1.22%, and 0.71%, respectively). Transition/transversion ratios from the consensus sequence are 0.20, 0.69, and 0.70, respectively.   相似文献   
76.
Mexico is the main producer, consumer and exporter of avocado in the world, being Michoacan the main producer state contributing more than 80% of the national production. There are phytopathogens that decimate the production causing the death of the tree. Root samples were collected in avocado trees that showed the characteristic symptomatology of the disease known as avocado sadness, the sampling was carried out in four of the main avocado producing towns, in the state of Michoacan, Mexico. The isolation consisted in sowing root tissue in Petri dishes with V8®-PARPH culture medium, subsequently they were identified morphologically and for species level it was determined by molecular biology, with the PCR-ITS technique. Pathogenicity tests were performed in triplicate with avocado seedlings with more than six leaves. After 24 hours, the inoculated plants expressed decay in the apical part, after 120 hours the leaves showed yellowing and after 15 days there was a generalized wilt on the stem and leaves, re-isolating the phytopathogen Phytopythium vexans. This study confirms the first report of the oomycete P. vexans affecting avocado trees in the most important producing region of the Mexican Republic.  相似文献   
77.
Previous studies with adenovirus mutants have indicated that a 10,400-molecular-weight (10.4K) protein predicted to be coded by an open reading frame in region E3 of adenovirus functions to down regulate the epidermal growth factor receptor (C. R. Carlin, A. E. Tollefson, H. A. Brady, B. L. Hoffman, and W. S. M. Wold, Cell 57:135-144, 1989). We now demonstrate that the 10.4K protein is in fact synthesized in cells infected by group C adenoviruses. This was done by immunoprecipitation of 10.4K from cells infected by a variety of E3 mutants, using antisera against three different synthetic peptides corresponding to the predicted 10.4K sequence. The 10.4K protein was translated primarily from E3 mRNA f, as indicated by cell-free translation of mRNA purified by hybridization from cells infected with an RNA processing mutant that synthesizes predominantly mRNA f. The 10.4K protein was overproduced or underproduced in vivo, respectively, by mutants that overproduce or underproduce E3 mRNA f, also indicating that the 10.4K protein is translated primarily from mRNA f. The 10.4K protein migrated as two bands with apparent molecular weights of 16,000 and 11,000 (10 to 18% gradient gels); both bands contained 10.4K epitopes, as shown by Western blot (immunoblot). Only the 16K band was obtained by cell-free translation, suggesting that the 16K protein is the precursor to the 11K protein. The 10.4K protein is a membrane protein, as shown by cell fractionation experiments and as predicted from its sequence. The predicted 10.4K sequence as well as a putative N-terminal signal sequence and 30-residue transmembrane domain are conserved in adenovirus types 2 and 5 (group C) and in types 3, 7, and 35 (group B).  相似文献   
78.
79.
Seven strains of nonproteolytic Clostridium botulinum (types B, E, and F) were each inoculated into a range of anaerobic cooked puréed vegetables. After incubation at 10 degrees C for 15 to 60 days, all seven strains formed toxin in mushrooms, five did so in broccoli, four did so in cauliflower, three did so in asparagus, and one did so in kale. Growth kinetics of nonproteolytic C. botulinum type B in cooked mushrooms, cauliflower, and potatoes were determined at 16, 10, 8, and 5 degrees C. Growth and toxin production occurred in cooked cauliflower and mushrooms at all temperatures and in potatoes at 16 and 8 degrees C. The C. botulinum neurotoxin was detected within 3 to 5 days at 16 degrees C, 11 to 13 days at 10 degrees C, 10 to 34 days at 8 degrees C, and 17 to 20 days at 5 degrees C.  相似文献   
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号